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This paper provides a validation of a novel sampling, storage, and evaluation method named raytraverse
that can quickly and accurately compute glare and visual comfort metrics including vertical illuminance
(Ev ), Daylight Glare Probability (DGP), and Unified Glare Probability (UGP). The motivation is to provide a
path towards understanding the spatial and temporal distribution of daylight conditions in an architec-
tural space. Current spatial temporal simulation workflows are constrained by the trade-offs between
simulation time, accuracy, generality, and storage requirements. Raytraverse provides a bridge between
illuminance sensor calculations, which are fast to calculate but provide limited information, and high-
resolution image generation, which provide more information but have long simulation times. To make
this bridging possible, it relies on a pair of strategies that yields both high accuracy and high information
data. First, an iteratively guided sampling approach based on the discrete wavelet transformation greatly
reduces the number of view rays submitted to the renderer. Second, rather than collecting returned val-
ues in a raster image or dense matrix, a spatial data structure is used to both sparsely store and re-weight
the samples according to their effective solid angle, allowing for the direct integration of any view based
lighting metric and the synthesis of interpretable high dynamic range images (HDRi). These strategies can
be coupled with existing rendering and climate based daylight modeling (CBDM) methods. Through a
comparison with high-quality reference simulations and a best practice CBDM method based on
Radiance, the raytraverse methods are shown to significantly reduce the simulation time needed to accu-
rately simulate saturation, contrast, and combined visual comfort metrics for a complete set of annual
hourly sky conditions from a range of locations within an office floor plan. The stored simulation data
can be quickly re-analyzed for different view directions, metrics or images, and sky conditions.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A primary task when using simulation based analysis for day-
light planning is determining where, when and in howmuch detail
to look across the space under evaluation. Because daylight, build-
ing occupation, and building control are not fixed states, the goal of
any prospective simulation is not to predict particular conditions
experienced at individual time-steps, but to use a set of possibili-
ties to understand something about the future buildings perfor-
mance. How this domain of states is chosen impacts the
resulting distribution of predicted lighting values and can have
as large of an effect on the results as any particular scenario being
studied. The more constrained a task is by computing resources,
the harder it is to select a domain that will be representative.
The evolution of simulation protocols for daylight performance
standards illustrates how an increase in computing power enables
a larger analysis scope. The motivation for moving from a daylight
factor calculation at a typical point, to a room of points, to multiple
sky conditions, to annual hourly conditions, is to get closer to a
representative distribution. Without this broader domain, it is
impossible to quantify the impacts (which are both spatial and
temporal) of building orientation, fixed shading, dynamic facade
operation, and interior layout. Without efficient computation, eval-
uating this broader domain would be impractical. A focus on speed
or accuracy alone cannot answer the question of how useful a sim-
ulation method is. Instead, it is the relationship between simula-
tion time and accuracy, which we call efficiency, that determines
utility. The most accurate method that takes weeks to simulate
with computers consuming energy 24 hours a day is not useful
for quickly analyzing design iterations. Likewise, a fast method that
introduces significant error or bias is also not useful. The efficiency
of any given method is not a fixed relationship, and may vary
depending on the scene, parameters, target accuracy, target time,
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Nomenclature

Symbols and Abbreviations
Ev vertical illuminance (lux)
L average luminance (cd=m2)
GCR a unitless measure of contrast in the field of view, de-

fined in Eq. 1
MAEdn distribution normalized mean absolute error, see Eq. 2
MAPEdn distribution normalized mean absolute percentage er-

ror, see Eq. 2 with: Dxi ¼ xi;test � xi;ref
�� ��=xi;ref

MSDdn distribution normalized mean signed deviation, see Eq.
2

ASE annual sunlight exposure
BSDF bi-directional scattering distribution function, here

specifically referring to the material primitive imple-
mented in Radiance

CBDM climate based daylight modeling
DDS dynamic daylight simulation

DGP daylight glare probability
MAE mean absolute error

Pn
i xi;test � xi;ref
�� ��=n, where n is the

number of cases, i is the case, test is the value of x
according to the test method, and ref is the value
according to the reference method

MAPE mean absolute percentage error
100 � Pn

i xi;test � xi;ref
�� ��=xi;ref =n

MSD mean signed deviation
Pn

i xi;test � xi;ref
� �

=n
MSPD mean signed percentage deviation

100 � Pn
i xi;test � xi;ref
� �

=xi;ref =n

RMSE root mean square error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i xi;test � xi;ref
� �2

=n
� �r

TMY typical meteorological year
UDI useful daylight illuminance
UGP unified glare probability

1 TMY data are hourly annual weather conditions for a given location based on
historical conditions at that weather station. Different standards exist for the range of
years included and the criteria used for selecting typical conditions. See [4] and ISO
15927–4:2005.
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available hardware, and the spatial and temporal scope of the
analysis.

The major limiting factor for capturing the spatial and temporal
distribution of daylight conditions within a space is the exponen-
tial growth of the analysis domain known as the curse of dimen-
sionality. Fully characterizing daylight is up to an eight
dimensional problem, grouped into four by their type: position
(3), direction (2), source direction (2), and spectrum (1). Since all
of the target metrics currently rely on photometric integrals, the
spectral dimension is not considered here. Sampling this domain
uniformly means that adding a single step in one dimension prop-
agates to all of the other dimensions. This paper shows how the
raytraverse sampling method, which has previously been shown
to accurately sample directional view rays [1], can be generalized
and applied to sampling source directions and positions within a
space. By adaptively sampling these three dimensional sets (posi-
tion, direction, source direction) separately, the relationship
between the magnitude of the analysis domain and the effective
resolution of each axis is no longer multiplicative: adding addi-
tional samples in one part of the sample space does not require cal-
culating those samples along the entire axis. Each point has its’
own pattern of sampled sun positions, and each source has its
own pattern of directional sampling. While this paper presents
the method for adaptively sampling position, source and direction,
the validation uses predefined sampling locations to match the ref-
erence simulations. Future work will be needed to validate adap-
tively sampling across positions.

To validate these – or any – new methods for an annual tempo-
ral domain requires careful consideration of the cases included in
the validation. Each site, building, orientation, and point within a
space will experience its own unique distribution. Daylight simula-
tion methods tend not to have the same errors, magnitude or type,
for different daylight pathways (direct/indirect, sun/sky, transmis-
sion/reflection) and conditions (high/low, contrast/brightness). The
over or under representation of a particular condition in the valida-
tion set, relative to any future use cases, can skew the expected
accuracy. To control for this, the scope of the validation needs both
to be broad enough to cover expected conditions and the reported
error statistics need to control for the distribution of the validation
set. This paper presents a simulated reference validation procedure
that bins the error according to the reference conditions using the
target metric. This yields normalized error statistics for assessing
overall accuracy and itemized error reporting to determine the
reliability of the methods across conditions.
2

1.1. Climate based daylight modeling in visual comfort studies

Climate based daylight modeling (CBDM) uses daylight coeffi-
cients as an efficient means to compute hourly values that span a
time period representative for the local climate. CBDM and its cor-
responding annual metrics were originally motivated by the need
for quantitative predictions of daylight supply, measured as hori-
zontal (work-plane) illuminance, as a supplement for electric light-
ing [2,3]. Sharing Typical Meteorological Year (TMY)1 data as a
common basis with general Building Performance Simulation
(BPS), CBDM helps account for the beneficial effects of daylight on
the energy demand of buildings [5].

The increased efficiency of electric lighting and the observation
that the expected beneficial effects of daylighting were often not
realized, motivated an increased interest in the interplay of visual
comfort in naturally illuminated spaces and energy demand [6]. A
tempting approach was to simply reinterpret the simulation
results produced for BPS as proxies for visual comfort, e. g. by
defining upper boundaries of beneficial ranges of horizontal illumi-
nance (as in Useful Daylight Illuminance, UDI [2]) or testing for
direct exposure to sunlight (Annual Sunlight Exposure, ASE[7])
[8]. Research however showed that horizontal illuminance is a
poor proxy for visual comfort and in particular for glare [9].

As the field has moved to recognizing that the quality of day-
light is as important as the quantity of daylight, performance stan-
dards now include view based glare metrics (such as the CEN
daylight standard EN 17037:2018). Compliance is demonstrated
either through precomputed tables or on-site evaluations of
extreme conditions. For example, the tables in the CEN standard
are made from annual simulations from a single point looking at
the 5th percentile of glare occurrence at a worst case point. This
is because the calculation of the most widely adopted and vali-
dated glare metrics, DGP in controlled window adjacent studies
[10] and UGP in extensive field studies of open offices [11], typi-
cally require HDR images, whether captured or simulated, for cal-
culation. The computational methods that drive CBDM methods
can be used to accurately produce these images over the course
of a TMY[12], but calculation time typically constrains the extent
of such an analysis. Techniques exist that take a hybrid approach
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supplementing illuminance calculations with direct sun (and in
some cases specular reflections) to capture the most common con-
trast scenarios. One of these techniques is eDGPs [13], the general
principles of which have since been implemented in a number of
Radiance [14] front-ends. While this method can be accurate, it is
dependent on the accuracy of the externally calculated illuminance
and is still not practical to compute across a large spatial domain.
More recently two other approaches offer significant time savings.
ClimateStudio is a widely used software package that includes an
annual glare calculation. According the documentation (https://cli-
matestudiodocs.com/docs/annualGlare.html), ”For annual DGP
simulations, ClimateStudio relies on the vertical illuminance por-
tion of the DGP formula, plus a contrast measurement from the
solar disc.” This approach, with proper settings, could be accurate
under certain circumstances, but will not account for other glare
metrics, rough specular transmissions, bright sky, or diffuse and
specular reflections that may act as glare sources. Imageless DGP
[15] is a matrix based method that is included with Radiance as
the dcglare executable. This method may not account for glare
sources from reflections or through low transmission glazing or
shading.

1.2. Daylight simulation methods validation

The models, renderers, and workflows commonly used in day-
light simulation have a long history of validation, both referenced
against physical measurements and in comparison to a reference
simulation. Measurement based validations are critical to make
sure that simulations accurately reflect the physical world, are nec-
essary for processes where a simulated reference does not exist for
the model being tested, and are a prerequisite for simulated refer-
ence validation, like the one presented in this paper.

Different validations capture the error over different parts of the
simulation process, Understanding which parts of a simulation
process and what additional confounding errors may exist is
important for properly contextualizing the reported error. The cap-
tured error of the validation presented in this paper is shown rel-
ative to that of some notable validations in Fig. 1. Six studies
[25,17,18,26,19,20] validate daylight coefficient based simulations
using Radiance against physical measurements. The captured error
of all include: geometry, material modeling, light propagation
modeling, simulation algorithm, and simulation parameters, and
is confounded by measurement error. While the methods differ
between the studies, all found similar magnitude mean signed
deviations, MSD, (10%) and root mean square errors, RMSE, (20%)
for horizontal illuminance.

Other validations have taken a different approach to reporting
error. Lee et al. [21] did a validation study of image based 3-
phase and 5-phase methods, against both measured data and a ref-
erence simulation method (the reference simulation only includes
illuminance sensor calculations). Here, error is quantified by its
distribution, the percentage of cases within 5%, 10%, and 20% rela-
tive error. Brembilla and Mardaljevic [3] focus on checking the
accuracy of annual summary metrics, like UDI and ASE. While
the daylight availability metrics are in general not very sensitive,
they found that daylight coefficient methods that do not account
for the true source size are not well suited to tasks requiring pre-
cise angular specificity.

In addition to point in time illuminance validations, there are
also image based validations. Grobe [24] validates the use of the
Radiance photon-mapping implementation [27] coupled with high
resolution bi-directional scattering distribution functions (BSDF).
Like Lee et al.[21], this study validates images both in terms of
direct photometric quantities and discomfort glare metrics. Jones
and Reinhart [22] perform detailed assessments of the luminance
distribution for each of the assessed methods. In validating cap-
3

tured HDRi simulations vs. GPU based Accelerad and Radiance, they
found that measurement and modeling errors play a larger role
than errors introduced by simulation, although it is important to
note that both simulation methods used the most physically accu-
rate representations of solar source and indirect light propagation.
This confirms an earlier finding by Reinhart and Andersen [19]
where after partially correcting for the sky measurement and mod-
eling error, RMSE percentage errors for their proposed translucent
material model went from 14–18% to 8–10%.

While the summary error metrics in all these studies give gen-
eral confidence in using CBDM with Radiance to understand some-
thing meaningful about building performance, they do not on their
own suggest the source of the errors. This is important in the con-
text of developing new simulation methods. In the case of a non-
uniformly distributed errors, if the simulation method is applied
to a case with a different distribution of conditions, the error for
that case could be much different. To understand this distribution
of errors, these validations use a number of strategies, including:
excluding high consequence geometric errors where the photocell
may be in sun while the virtual sensor is not and vice versa [17],
and scaling the results based on the light incident at the facade
to control for the sky model [18,19]. Several of these studies report
errors separately by sky-type, including Reinhart and Walkenhorst
[18] and Mcneil and Lee[20]. In Mardaljevic[25], the MSD between
the six test points differs, where there is a tendency towards an
under estimation of illuminance at points that receive more direct
sun and a tendency towards over estimation of illuminance at
points that receive less direct sun. This reveals the dependence of
the error on the distribution of conditions evaluated.

This study validates Raytraverse and a comparison method
against the best available simulated reference, using what is typi-
cally referred to as ”Radiance classic,” meaning the rpict executable,
without employing any of the approximations that help make
CBDM so much more efficient then this brute force approach.
Returning to the idea of captured scope shown in Fig. 1, what this
means is that we are attempting to minimize the error introduced
between a hypothetical measurement and the reference simula-
tion. Through this, the captured scope of the validation presented
here overlaps with these physical measurement validations, so it
is neither that any error here directly adds on top of these errors,
nor that it avoids these errors. In the case of small deviations
between test and reference, the strongest conclusion we could
make is that the test method is as close to as accurate as the
reference.
2. Simulation methods

One of the goals for developing raytraverse is to find more effi-
cient ways to simulate daylight that compliment existing, on-
going, and future developments in CBDM. To realize this goal, it
is helpful to view the daylight simulation process as a series of
components. Fig. 2 illustrates these components and shows that
raytraverse is focused on which samples are rendered and evalu-
ated, not how they are modeled or rendered. This means that the
methods detailed here can be integrated with other innovations,
such as GPU based rendering [22] or photon-mapping [27], to
potentially offer compounding gains in simulation efficiency. The
core of the method is an adaptive sampling approach that reduces
the amount of work that the renderer needs to do. Associated with
this are the methods needed to evaluate the sparse representation
of the traversed domain that this sampling provides.

Before broaching the details of raytraverse, readers familiar with
Radiancemay find the following description of Fig. 2 in terms of the
corresponding Radiance executables helpful. Beginning with the
input, parameters are selected that control various steps in the
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Fig. 2. Diagram of a daylight simulation process. In many cases, view-ray sample generation is embedded in the renderer (such as Radiance’s rpict) or is statically determined
as an input (rtrace). Raytraverse generates samples, including view-rays and source directions, based on the partial output from the renderer. For sampling across positions
and source direction, interim evaluation is also used.

Fig. 1. Validations are shown with the approximate extent of the process covered. In a comparative assessment of errors, process outside of this extent is the same across the
comparisons.[16–24,3].
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workflow (dashed lines with open arrows). For example, the image
resolution would be fed to the sampler, ambient sampling param-
eters to the renderer, sky discretization to the sky model, and glare
source thresholds to the observer model. The scope (where to look)
and scene (what to look at) are similarly statically described by
4

sensor points or view files and Radiance scene files (this input
information is shown as grey filled arrows). Moving to the simula-
tion process, using Radiance in this diagram, the sampler would be
the vwrays program, which takes a view specification, defined by
the scope, and passes view rays to the renderer (shown as black
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filled arrows denoting it is part of the output data). The renderer
would be the rtrace or rcontrib program2, which would solve for
the luminance in the direction of the view rays, based on the pro-
vided scene, and the sky and material models (coded by Radiance
primitives, data, etc.). These luminance values are then output as a
HDRi suitable for further evaluation. The evalglare program takes this
luminance data, applies an observer model, and outputs a view
based metric ready for visualization, statistical analysis or other
interpretation:

# sampler

vwrays -ff -vf view.vf -x 1000 -y 1000 > viewsamples

# renderer

rtrace -x 100 -y 1000 -ld- -ffc scene.oct

< viewsamples > view.hdr

# evaluation

evalglare view.hdr

Raytraverse breaks this uni-directional flow of data from input
to output, indicated by the orange filled arrows in Fig. 2. The ray-
traverse samplers, which operate across direction, position, and
solar source, rely on intermediate evaluation of the rendered
results to guide subsequent view and position rays, and in the case
of solar source sampling, additional sun positions to render. The
following sections describe the sampler and evaluation compo-
nents in more detail.

2.1. Wavelet guided adaptive sampling

A wavelet transform can characterize a sampling space by the
rate and magnitude of changes in the distribution of the incident
light. Raytraverse uses this structure to construct probability distri-
bution matrices from lower resolution estimations in order to tar-
get high-variance locations for additional sampling [1]. Wavelet
guided sampling has been previously utilized for generating
photo-realistic renderings, including by Overbeck et al. [28]. They
also use a wavelet representation to construct a sampling probabil-
ity, but the methods have some key differences. Overbeck et al. use
the sampling to determine the number samples needed for each
result and sample the full wavelet domain simultaneously; in
order to sample a low detail region, multiple samples are gener-
ated to cover the region and then averaged together. Instead, Ray-
traverse treats individual samples, regardless of the resolution
being sampled, as discrete independent samples. For the purposes
of constructing sample probabilities, they serve as the mean for the
current sampling resolution. This is a poor way to estimate a
region, but the sample is more valuable for final reconstruction if
it is not associated with a particular sampling level, and in practice
the estimate works well. Raytraverse uses the sampling to deter-
mine the number of output results, while Overbeck et al. use a
fixed sampling budget. Additionally, raytraverse’s approach to
identifying regions of high variance is employed not only in image
generation but to all dimensions, including view regions, sensor
grids, and time-steps.

The general wavelet guided sampling process is described in
Fig. 3. The initializing vectors must be stratified across the sam-
pling domain at a sufficient resolution to capture the major scene
details. Unlike uniformly sampling, where samples can be drawn
from anywhere in the space, stratified samples are drawn into lay-
ers (strata) along each dimension, forming a jittered grid in two
dimensions as shown in the top left of Fig. 4. This is a common
2 rpict, which is not employed by raytraverse, combines both the sampler and
renderer

5

variance reducing technique in Monte Carlo sampling, but is also
used here so that each sample corresponds to a matrix element
in the detail matrix. In the case of angular space sampling, includ-
ing both directional view sampling and solar source sampling,
samples are from a square grid representing a hemisphere. Using
the Shirley-Chiu disk to square transform [29] provides a conve-
nient way to both draw evenly spaced samples, as the transform
preserves fractional area, and to apply the high pass filters across
each axis orthogonally. We can use the details found in the square
sampling space as a suitable representation of detail in spherical
space because the disk to square transform is bi-continuous (points
remain adjacent in both directions) and low-distortion (a chair will
still look like a chair).

Returning to the initial vector samples in Fig. 4, they are solved
for by the renderer. In the case of directional sampler, the result of
each vector is a luminance value (or sky coefficients), but in the
case of sampling across position or source direction, the result will
be a complete description of the incident light (a vector comprising
samples of the angular luminance distribution). In other words, to
sample across sources and positions, each sample initiates its own
directional sampling. These results, in addition to being saved as
part of the final result, are used to help determine subsequent sam-
ples. Continuing through Fig. 4, the results from the initial vectors
(top left) are used as an estimate of the lowest resolution scale
coefficients of the wavelet transform (top middle). These are stored
in a weight tensor that holds, for each cell at the current resolution,
the features used to estimate the detail coefficients. In the case of a
single source sampler, the single value returned by the renderer
can be used directly to update the weights. For a sky-patch sam-
pler, where multiple values are returned for each view-ray, the
maximum patch value (coefficient) is used. For a solar source sam-
pler or area sampler, where the engine returns the complete distri-
bution of light incident at a point, several metrics must be
computed to populate the weights and ensure that different forms
of variance are captured.

Once the weights are updated, it is up-sampled by a factor of
two to the next resolution of the wavelet transform. A detail matrix
(top right) is calculated by convolving the weights with the detail
filter-bank, summing the magnitudes, and in the case of multiple
features, taking the maximum detail coefficient. This detail matrix
is thresholded to determine the number of samples. The threshold
is lower initially (choosing more samples) and then grows at
higher sampling levels where the relative importance of each addi-
tional sample is lower. The same detail matrix is then used to draw
the next round of samples (second row left). The rendering results
from these samples update the weights, and the process repeats to
a fixed final resolution. The final sampling density is governed by
the threshold parameter and this process, not by the stopping res-
olution. In this way raytraverse automatically adjusts the sampling
across all dimensions independently.

Applying this method to sampling sun positions requires decid-
ing which scalar properties of light arriving at a point are impor-
tant for deciding whether to resolve additional sources. Testing
showed that both a measure of brightness and a measure of con-
trast were needed to cover expected scenarios. The average lumi-
nance (chosen since there is no dependance on view direction) is
used alongside a global contrast ratio:

GCR ¼ log
Xn
i¼1

L2i xi

L2x
; ð1Þ

where Li and xi are the luminance and effective solid angle of each
incident ray, L is the average luminance of all rays (weighted byxi),
and x is the total solid angle (4p in the case of full-spherical sam-
pling). GCR expresses the contrast from a point in a similar form to
many glare equations, but it is completely independent of intensity



Fig. 3. The General wavelet sampling process. Vectors describe the dimensions being sampled, such as view-rays, view-points, or solar source directions. Weights are the
quantities used to calculate the detail coefficients, in the case of a single source sampler, this is just the luminance result of each view-ray.
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and does not require any glare source detection. This is critical
because GCR is being applied to a coefficient result that does not
have meaningful units. Fig. 5 shows an example of how the sam-
pling evolves. Note that in the bottom left image showing the com-
plete sampling, there is a cluster of additional sampling to the west
(right side) induced by the specular reflection of light off of the east
glazing after being transmitted through the south glazing. This
potential pathway is highlighted on the image in magenta and
was derived from the sky patch sampling results.

Applying wavelet sampling to positions requires first deciding
which dimensions to sample. For most conventional building anal-
yses, this typically means sampling a horizontal plane located at
some average eye height (seated or standing). This horizontal plane
estimates everywhere an occupant’s eyes might be across a level
zone. In the case of source direction sampling, measuring the vari-
ance in source direction would undermine the sampling, but for
area sampling it can be important to determine the direction
towards the light sources from a point. For example, consider sam-
pling a sky in a room with windows on opposite walls. From the
middle of the room, a step towards either direction will change
the relationship to each of the windows but the overall contrast
and brightness would be the same when measured by the sum of
the sky-patch coefficients. However, looking ahead to evaluation,
these points could be different once a sky vector is applied and a
view direction is selected. Working within our implementation
requiring positive scalar features, in addition to average luminance
(L) and GCR, the horizontal peak direction, as separate cartesian
direction coordinates x and y translated and scaled from
�1 6 x 6 1 to 0 6 x 6 1, is included. The peak direction is the nor-
malized vector sum of all rays within 10% of the maximum value.
Fig. 6 shows how this positional sampling resolves sampling for
different source directions.
2.2. When the wavelet misses

The wavelet based sampling process can capture most of the
photometrically important information in typical architectural sce-
nes as long as the initial sampling resolution is high enough that it
is smaller than the apparent size of the windows. With this initial
sampling, it will find smooth gradients, sharp transitions, and
rough specular transmission and reflection. What this approach
cannot do is reliably find small point sources, like the direct sun
and specular reflections of the direct sun. In a similar spirit to
the iterative sampling – which posits that if you already know
6

something about lighting conditions, the sampler can use that
information – raytraverse can use two pieces of pre-existing infor-
mation prior to sampling for a source direction at a point. First, the
source direction is known, so it is easy enough to sample the direct
view to the sun separately. Because this can be such a high impact
contribution to glare metrics, which can be sensitive to small
errors in source solid angle, and because this sampling can be done
without any inter-reflection calculation, the direct view of the sun
is sampled at a high resolution, with between 256 and 4096 sam-
ples sent within the solar subtense to capture even small details
like a dot frit or partially occluded views. Second, as described in
Wasilewski et al.[1], if a sky patch sampling has already been com-
pleted for the point being sampled (or the nearest available when
adaptively sampling an area), then the source patch coefficient can
be used to guide a search for specular reflections. When the sam-
pling of a given source for view directions reaches an effective res-
olution of 512x512 samples per hemisphere, the sun patch
coefficients from the sky sampling can be used as an additional
probability distribution from which to draw additional samples.
Any coefficient with a value over the predefined specular sampling
threshold will be populated with rays at this resolution, which is
fine enough to ensure that at least one ray will hit any fully visible
sun reflection. Once seeded with this initial hit, the final level(s) of
view direction sampling will refine this detail with the normal
wavelet process.

2.3. Data storage and evaluation

Assuming the results of the sampling process successfully cap-
ture the necessary detail in the scene, the problem of how to store
and evaluate this data remains. A typical CBDM workflow requires
vector operations on each view-ray or pixel for each evaluated
time-step. Then to calculate a metric, each result (across the full
temporal domain) is evaluated again. If the results include all of
the pixels in a full-sized image, this represents a substantial time
cost that can, for simple scenes and large numbers of time-steps,
exceed the rendering time. While image reconstruction from
non-uniform samples can be used as an efficient rendering tech-
nique, for CBDM it is more efficient to evaluate the samples
directly.

2.3.1. Storing Light at a Point
Analogous to an image or set of images covering all directions

from the point, raytraverse stores the non-uniform sampling in



Fig. 4. Adaptively sampling directions from a single point for sky patch contributions. Samples generate weights, which are used to find details, which are used to generate
more samples. When the sampling is complete, all samples (bottom left) are used to describe the complete distribution of incident light at a point. Sample, weight, and detail
images are shown in Shirley-Chiu square coordinates. The visualization of the final sampling result is shown with two angular fisheye views.

4 Mitchell [31] investigated this problem for the purposes of super-sampling to
combat aliasing in rendered images. They mention that a satisfying, but impractical
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an object called a LightPoint. The LightPoint represents all light
incident on a point in the assessed space and manages two chal-
lenges with storing non-uniform data. To integrate view based
metrics or synthesize images, the results need to be located (by
direction relative to view direction) and weighted (by effective
solid angle). With an image and a defined view specification, view
direction and solid angle can be recovered by knowing the pixel
location, as in the Radiance executables pcomb, ximage, and others.
In raytraverse, there is no predefined pixel coordinates, so rays are
stored with a direction, a solid angle, and a value. The value could
be a luminance, a source coefficient, or a vector of source coeffi-
cients. To efficiently find relevant rays, a kd-tree3 is built from
3 The kd-tree is implemented by scipy [30]. This implementation provides methods
to quickly return the closest result to a vector or all of the vectors within a search
radius (view-angle).

7

the direction vectors. The solid angles are calculated using the Vor-
onoi regions4 of each direction vector on the unit sphere.

With component (e.g. daylight coefficient) based sampling it is
necessary to add the components together, in Radiance this is done
with the dctimestep and pcomb programs. In the case of energy con-
serving operations like vertical illuminance (Ev) or L results can be
calculated separately and then added together. Likewise, when
synthesizing an image, it is also possible to interpolate each com-
ponent individually and then add the result. When calculating con-
approach would be to use the Voronoi areas of the samples. In their case, the
impracticality stems from attempting to do this on a per pixel basis for an entire
image, with very little down-stream payback. For this application the relative cost of
building the Voronoi regions is small compared to the savings for simulation and
evaluation time. The spherical voronoi routine used in implemented by scipy [30],
which calculates spherical polygons, correctly summing to 4p.



Fig. 5. Adaptively sampling solar source directions from a single point. Images are Shirley-Chiu squares showing a worm’s eye view, where North is up and East is to the left.
The detail is calculated from a combination of L and GCR. Each sample represents the directional sampling for that source at a point, an example of which is shown bottom
right. The bottom left image shows a complete solar sampling for this point overlaid over a sky sampling image to help locate the geometry.
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trast based metrics, it is necessary to add the LightPoints together
prior to metric calculation. This can be achieved by querying each
LightPoint with the sampled ray direction vectors of the other, cul-
ling duplicates, and constructing a new LightPoint with the union
of both vector sets. The Voronoi regions also need to be recalcu-
lated. Each sun LightPoint only holds a single source component,
but a sky LightPoint may have hundreds of components. Assuming
similar sampling rates between the suns and the sky, the combined
LightPoints require 20–50 times the disk space. For disk storage
and computation efficiency, it is practical to first group sky condi-
tions by matching queries. All time-steps using the same pre-
calculated solar positions are evaluated at once. This way the com-
bined LightPoint only needs to be constructed once, used, and dis-
carded without writing to disk.
8

2.3.2. Storing Light on a Plane
Using the same logic and implementation as the LightPoint, a

similar method is needed to store a set of point sample results
for a particular source on a plane representing possible viewing
locations. The object that raytraverse uses to manage this is called
a LightPlane. The representative area of each point is computed by
intersecting the Voronoi regions with the boundary of the sam-
pling area. Using these weights, zonal statistics can be calculated
without interpolating to a regular grid. In the case of sky-patch
coefficients, where one sampling scheme represents all of the
sky-patch sources, this is all that is needed to organize the light-
field data. However, the results for individual sun positions will
not all match, because the sampling density will vary, as seen in
Fig. 6.



Fig. 6. Positional sampling patterns for several different sun positions in single occupancy office facing East, the color scale shows the effective area of each sample. Direct sun
penetration at eye-level is overlaid (bright vs. dark regions) to show the relationship between finer resolution sampling and abrupt changes in lighting condition.
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Evaluating a point on the LightPlane at a particular time
requires finding the closest sun position and point in space.
Because the angular units of sun position do not match the units
of spatial position it is not straightforward to build a kd-tree from
the combined vector in a way that will minimize the combined
error. Preliminary results have shown promise using two methods.
A normalization coefficient can be determined from the resolutions
of the sampling schemes for source and position, then the closest
query can be used. Alternatively, in the case of a zonal evaluation,
where there are not fixed points to query, the lookup can be done
in two steps, beginning by filtering all points that have a source
within a tolerance, and then culling points with greater source
errors that have suitable alternatives within a positional tolerance.
Future work will be needed to continue to develop and validate
these methods.

Once a proper source and point combination has been selected
and the various components of light sources added together,
applying source coefficients and calculating view-based lighting
quantities and metrics is straightforward and directly analogous
to the Radiance executables gendaymtx, dctimestep, and evalglare.
After collecting all the rays originating from a point within a view
cone, the rays can be summed according to the metric. Given the
low computational expense, at this stage the view to the direct
sun is recalculated if the estimated position is above a threshold,
to remedy high consequence errors, such as the sun being just
behind (or just next to) a mullion. For the results presented in this
paper, all suns were resampled when the source position error is
greater than zero.
3. Validation Methods and Setup

Given the repeated validation of carefully implemented Radi-
ance based workflows against measurement, there is support for
using simulated reference data to assess the accuracy of alternative
models and simulation methods that may offer ease of use or cal-
culation speed improvements. As suggested by Reinhart and
Andersen [19], if we are more interested in understanding the
”intrinsic” than the ”compound” error, a reference that controls for
measurement and modeling errors outside the process being
validated is potentially more informative. Where appropriate, a
9

simulated reference also can be used to validate a much wider
range of conditions.

Building on a previous validation of raytraverse that assessed
failure modes including specular reflections, complex fenestration
systems, and rough specular reflections [1], this validation is
focused on validating the efficiency of the process for a more typ-
ical case where both the simulation time and accuracy correspond
to expected applied cases. Efficiency is defined in terms of the bal-
ance between accuracy and relative computation time. The goal of
this validation is to isolate the additional reduction in simulation
time and error introduced by raytraverse. To do this, the validation
consists of a comparison between three methods: a reference sim-
ulation (for evaluating accuracy), a comparison simulation (for
evaluating efficiency), and a complete workflow using raytraverse.

3.1. Simulation Workflows

The three workflows use Radiance, as well as the same material
and sky models. The reference simulation provides the best esti-
mate of this simulated reality, avoiding any biased techniques typ-
ically used to speed up the calculation in favor of higher accuracy.
To offer a more meaningful comparison for accuracy at more prac-
tical simulation times, the comparison and raytraverse workflows
are both based on the 2-phase dynamic daylight simulation
(DDS) method first proposed by Reinhart and Walkenhorst [18]
and extended to a higher level of sun position discretization by
Bourgeois [26]. This method was chosen over other CBDMmethods
based on a decision tree for selecting the appropriate method
developed by Subramaniam [32]. The 2-phase DDS method is cur-
rently the only N-phase method that handles high scene complex-
ity, provides accurately sized solar sources to calculate glare
metrics, and produces an image output.

3.1.1. Comparison simulation
The comparison simulation is an angular fisheye image based 2-

phase DDS implementation, based on the example scripts included
with Subramaniam’s tutorial [32]. The 2-phase DDS method
requires three simulation steps. First, the full ray depth (including
direct and indirect contributions) daylight coefficients (DC) are
simulated. Then, the direct component of the daylight coefficients
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(DDC) is simulated. Finally, the direct component of a higher reso-
lution grid of direct suns (SC) is simulated. To generate a time-step
result, a sky vector (including direct sun) is applied to DC, the
direct sun sky vector is applied to DDC, and the solar radiance is
applied to SC. By subtracting DDC from DC and adding SC, the
sky-patch direct sun contribution is replaced by the direct sun con-
tribution. This yields a high accuracy result for direct view rays
with an approximation of the indirect contribution of the direct
sun. The referenced tutorial did not include an image-based exam-
ple for the two-phase DDS, so the following was adapted from the
2-phase sensor example and 5-phase image example with Bash
(linux/macOS) syntax for each view:
vwrays -vf $vf -x $res -y $res -ff | rfluxmtx -w -ffc -v -n 12 -x $res -y $res n
$settings -o dout/images/"$bn"_MF1_%03d.hdr - $scene
vwrays -vf $vf -x $res -y $res -ff | rfluxmtx -w -ffc -v -n 12 -x $res -y $res n
$settings -ab 1 -o dout/images/"$bn"_MF1direct_%03d.hdr - $scene
# create filter for used suns bins (speeds up simulation time, but still

# creates images for all bins):

gendaymtx �5 0.533 -d -r 90 -m 6 dout/recs/lax.wea > dout/MF6_lax_suns.smx
echo "void light solar 0 0 3 1e6 1e6 1e6" > dout/filtered_suns.rad
rmtxop -c 1 1 1 -t dout/MF6_lax_suns.smx | getinfo - | total | rcollate -ir 1 -fa1 n
-ic 5186 -oc 1 -h | rcalc -e MF:6 -f reinsrc.cal -e ’Rbin = recno-1;cond=$1’n
-o ’solar source sun 0 0 4 $Dx $Dy $Dz 0.533’ >> dout/filtered_suns.rad
vwrays -vf $vf -x $res -y $res -ff | rcontrib -w- -ffc -n 12 -x $res -y $res -ld- n
$settings -ab 0 -o dout/images/sun_"$bn"/"$bn"_MF6sun_%04d.hdr n
-e MF:6 -f reinhart.cal -b rbin -bn Nrbins -m solar dout/filtered_suns.oct
# the following is run for each timestep/skyfile "sky.rad"n
genskyvec -m 1 sky.rad | dctimestep n
-oc dout/images/"$vf"_MF1_%03d.hdr > dc.hdr

genskyvec -m 1 -d sky.rad | dctimestep n
-oc dout/images/"$vf"_MF1direct_%03d.hdr > ddc.hdr

genskyvec -d -m 6 �5 sky.rad | dctimestep n
-oc dout/images/sun_"$vf"/"$vf"_MF6sun_%04d.hdr > sc.hdr

pcomb -o -s 1 dc.hdr -o -s �1 ddc.hdr -o -s 1 sc.hdr > output.hdr
In addition to all of the Radiance rendering parameters, several
additional parameters are required for a 2-phase workflow. These
are the sky-patch discretization and solar source discretization.
Sky-patch discretization presents an interesting tradeoff. A higher
number of patches will better resolve the sky distribution, but
the average number of rays terminating at each patch is inversely
proportional to the patch area. In cases where adjacent patches dif-
fer, and without a complimentary increase in -ad, the relative gain
in resolving the direct view of the sky can be undermined by the
loss of precision in sampling. In general, this is not an issue for
the smooth gradients of the Perez sky without direct sun. If a ray
hits a nearby patch, it will likely be assigned a close value. If the
patch resolution is increased, the difference between patches is
reduced, but the likelihood of under-sampling a patch goes up,
which mostly balances out. The problem arises when there is a
large difference between sky vector values applied to patches, as
is the case here when calculating the indirect component of the
direct sun. Even for the highest accuracy run of the 2-phase, a Tre-
genza sky discretization of 145 patches is used because rendering
parameters that did not introduce large systematic biases could
not be found for certain conditions with higher Reinhart patch sub-
divisions [26]. The highest accuracy run produces 900x900 pixel
resolution to match the reference simulation.
10
Because thesolarsourcesareonlyused foradirectcalculation, the
cost of a finer resolution is generally small and can be partially offset
by filtering the sources that are outside of the annual sun path. Rcon-
tribwill still createplaceholder images for thesemissing sources, but
the simulation time is reduced. By adding a run-line encoding step,
these placeholder images also take up very little disk space. For the
highest accuracy runof the2-phase, a sundiscretization of 5185bins
is used. Filtering these values by the sky conditions used in this val-
idation scope (see Section 3.2) means that only 686 source positions
are actually simulated. This precise value varies depending on the
number of time-steps and how the annual sun path for a particular
site intersects with the Reinhart patch subdivision used.
3.1.2. Raytraverse with 2-phase DDS
To accommodate the 2-phase DDS workflow, a process for cal-

culating and subtracting the direct daylight coefficients is needed.
To ensure the best possible match between the daylight coefficient
rays and the direct daylight coefficient rays, the rays used to sim-
ulate the daylight coefficients are repeated, but with the parame-
ters updated to stop at the direct contribution. Along with the
results of sampling the direct sun contributions outlined in Fig. 5,
we now have, for any given sky condition, three LightPoints,
matching the DC, DDC, and SC images from the conventional 2-
phase DDS method. These can be combined using the method
described in Section 2.3.1.

There are two other distinctions from previously described
implementations of the 2-phase DDS and that of the comparison
simulation. First, the sky is discretized according to a digitized
square projection of the sky hemisphere using the Shirley-Chiu
disk to square transform instead of a Tregenza or Reinhart patch
subdivision, see Fig. 7. This matches the discretization used by
the directional sampling and the sun position sampling, and has
several other advantages: patch areas are all equal size and dis-
cretization can happen at any square number. The second distinc-
tion is that only the enclosing sky-patch, instead of splitting energy
to the nearest three, is used for approximating the direct sun.



Fig. 7. Comparing the Tregenza (top left, 145 patches) and Reinhart sky subdivision (top right, MF=2, 577 patches) to a square grid projected to the hemisphere with the
Shirley-Chiu disk to square transform (bottom left, side=12, 144 patches; bottom right, side=24, 576 patches).
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Testing showed that a coarser sky-patch discretization is more effi-
cient, resulting in already large solid angles. Any additional group-
ing could introduce more directional and indirect source visibility
errors than those resulting from off-centered distributions.

3.1.3. Reference simulation
The reference simulation is not intended as a viable workflow,

but a best estimate of ground-truth given the various models
employed. By using a simulated reference, all of the models (mate-
rials, sky, weather) can be shared between workflows. This means
that any deviation from reference is introduced by the tested work-
flow. The reference simulations are calculated using the rpict pro-
gram of Radiance. Because of the size and complexity of the scene
geometry, it was not practical to use ambient caching. Also, the
ambient cache is not available in rcontrib. As a biased technique,
the ambient cache could introduce an artificial difference in results
between the reference and test workflows. Time and computer
resource constraints required a relaxation of rendering parameters.
Given that generating the reference data requires rendering 34,352
images, to select stable and unbiased rendering parameters that
are also calculable with the available computing power, a manual
parameter relaxation was performed:

1. A random set of 256 view rays are drawn from a dark and bright
region of the scene (see Fig. 8) with an overcast sky (to isolate
the indirect calculation).

2. To establish a benchmark, each view ray is simulated 32 times
with rtrace -ad 4000 -lr �14 -lw 1e-5 and averaged (roughly
equivalent to rtrace -ad 128000 -lr �14 -lw 3.125e-7).
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3. The -lr and -ad -lw parameters are independently relaxed,
repeating the the same simulation process, but this time using
the 32 repetitions to estimate the variance. While it is more
common to vary the -ab parameter, -lr functions similarly for
ambient rays.

4. These values are plotted against the reference values, sorted by
intensity for readability, and the simulation time was recorded.
Fig. 9 shows examples for -lr �2 and -ad 250.

5. There was no significant time savings through reducing -lr until
�4, but these settings have a negative bias of 10% (see Fig. 9,
right). On the other hand, even at -ad 250 there is no observed
bias, just a large variance. -lr �14 -ad 250 provides tremendous
savings in simulation time (12 times faster than -lr �2 -ad 4000
and 14 times faster than -lr �14 -ad 4000). Despite the large
variance at lower intensities, this was determined to be accept-
able, since the endpoint metrics are calculated for full images,
where local noise, especially at low intensities will cancel out.
This was also a practical decision because it was estimated that
running on the 60-core cluster available, it would still take
2 months to calculate to full dataset, even with these relaxed
settings.

6. The final rendering parameters used are: rpict -u+ -ab 14 -lr �14
-aa 0 -av 0 0 0 -ss 1 -st 0.001 -dc 1 -dt 0 -x 900 -y 900 -ad 250 -as
0 -lw 1.58e-3 -ps 3 -pt.04 -dj 1. The -ps 3 parameter was used to
reduce simulation time while still maintaining high resolution
at sharp edges. It was discovered after simulating the entire
set that this sampling failed to catch all of the specular reflec-
tions of the direct sun for some of the views. To remedy this,
but also avoid an additional 3 months of simulation time and



Fig. 8. A wide range of representative samples are used to determine appropriate parameters for the reference simulation. Background images are low quality estimations
with the same exposure to highlight both the range of values and varying rates of convergence (more noise in darker regions).

Fig. 9. Results from parameter check simulations. Left: -ad 250 -lr �14 -lw 1.6e-4 Right: -ad 4000 -lr �2 -lw 1e-5. Black line shows reference values with 20% error band.
Magenta line shows mean result for each view-ray (resorted) to show distributional bias. Dots show individual samples. Note that the left plot has increasing normally
distributed noise at low intensity but no bias. The right plot shows increasing negative bias at low intensity. The noticeable vertical clumps of points reveal that the bias varies
by sample direction. Those with larger negative bias have proportionally larger contributions from higher order bounces.
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the energy use this implies, all views with sun positions within
3 degrees of a possible specular reflection were rerun with -ps 1.
For an explanation of how the views and skies were filtered, see
Appendix B in the supplemental materials.

7. The original -ps 3 renderings took 55 days. As a final check, 200
randomly selected sky conditions were re-rendered with a
slightly different resolution (903x903) to avoid potential alias-
ing effects. The mean absolute error (MAE) of the Unified Glare
Probability (UGP) and Daylight Glare Probability (DGP) is less
than 0.001 and the mean absolute percentage error (MAPE) of
Ev is less than 0.2%. This confirms that the increased noise in
single pixel results does not propagate to whole image
evaluations.

8. For the set of 398 views and times with possible reflections, 203
have either no sun or a full view of the sun and 195 have some
combination of a reflection and/or a partial view to the direct
sun. For the first set, between the -ps 1 and -ps 3, the MAE of
UGP and DGP is less than 0.001, and the MAPE of Ev is less than
0.3%. This confirms that for conditions without partial views to
the direct sun or reflections, the -ps 3 parameter is sufficient.
However, the re-run of the reference data only covers reflec-
tions. Among the eight cases of partially visible sun without
reflections, the two runs had a MAPE for Ev of 14.0%. While this
is a limited and possibly non-representative set, it does imply
that the rest of the reference data could have a significant error
for these conditions, of which there are only 128 (0.4%) such
cases in the entire reference set of 34,352.

3.2. Validation Scope

The scene is an office building, currently under construction,
located in Irvine, CA. Materials and geometry are taken as is from
the provided model, which was used in consulting on daylight
and electric lighting design for the real project (see acknowledge-
ments). Materials do not include any complex fenestration systems
or rough specular surfaces. Specular surfaces are limited, but
include interior glazing, exterior glazing, and computer monitors.
Fig. 10. Partial floor plan. Solid arrows indicate primary view direction, dashed
arrow is the reverse view (denoted with an R when referenced). Metrics are
calculated for all eight view-point/directions, but all simulations support calculat-
ing metrics for any view direction from one of the four points.
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Four view points in the southeastern corner of the second floor
cover a wide range of conditions: an east facing private office, a
south facing private office, an interior open space, and a corner
lounge area, see Fig. 10. For each point, two 180 degree angular
fisheye views are simulated, a primary direction and the reverse
view. While the validation uses just the two view directions at each
point, it is possible to calculate view-based metrics for any view
direction from a pair of fisheyes. While not an important factor
for measuring accuracy, this is useful for measuring efficiency
between image-based methods and raytraverse.

The facade is clear glazing (64% visible light transmittance) and
the complete analysis is performed without dynamic shading.
While less indicative of a building in real operation, this is a com-
monly simulated scenario to understand how the base building is
performing. Additionally, having small transient patches of direct
sun visible from deep within the space creates a particularly chal-
lenging scenario for adaptive sampling because there is greater
variance between sun positions and the indirect distribution of
light in the space. Any sun control, such as roller shades, that
reduces this variance and contribution will be relatively easier
for the adaptive source sampler. The sky conditions include all day-
light hours in the TMY3 dataset from Los Angeles International Air-
port (downloaded from: climate.onebuilding.org). Daylight hours
were defined as times with the sun at least two degrees above
the horizon and a diffuse horizontal irradiance of at least 5
W=m2, resulting in 4,294 sky conditions. Skies were modeled using
the Perez all-weather sky model [33] with solar angle, direct nor-
mal irradiance, diffuse horizontal irradiance, and dew-point
temperature.

For each individual view and time, accuracy is evaluated for
three values, Ev, UGP, and DGP, which offer a range of saturation,
contrast, and hybrid glare metrics. While other glare and visual
comfort metrics may evaluate differently, a workflow that can
accurately measure these three metrics will likely be accurate for
any metric composed of similar values. Metric values are compared
directly, on a per time-step basis and not used as thresholded glare
predictions. This provides a broad range of applicability because
any derived, summary, or binary metrics and statistics will be at
least as accurate. This also insulates this analysis against a lack
of generality that could otherwise be introduced by changing glare
threshold values or intensity changes in the lighting condition,
such as a different glazing transmission or sky irradiance, that do
not otherwise impact the accuracy of the workflow.

In the course of the data analysis, large discrepancies due to
glare source grouping were observed. This confirmed an observa-
tion made by Pierson et al. [23] that for open office environments
the radius parameter used for grouping sources may need to be
carefully tuned. For a large scale simulation with widely varying
conditions, this is simply not practical. To minimize discrepancies
introduced by post simulation analysis, this study evaluated both
the reference and comparison workflows without glare source
grouping.
3.3. Data normalization/ error analysis

Among the validations reviewed in Section 1.2, the most com-
mon error metrics reported were MSD, quantifying systematic over
or under prediction, and RMSE, quantifying the unsigned error. The
advantage of these statistics is they are now well established in the
literature. However, MAE is used because it can be interpreted
more intuitively than RMSE. MAE is the linear average error,
whereas RMSE is quadratically weighted and represents the stan-
dard deviation, or square-root of the variance, which is not a mean-
ingful value for non-normally distributed residuals. This means
MAE also has the same scale as MSD, so the ratio of bias to noise
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can be inferred and they can both be normalized as percentage
errors in the same way.

A disadvantage of a mean quantity is that it provides no infor-
mation about the population distribution. The types and magni-
tudes of simulation errors vary greatly by condition, so including
a disproportionate number of error-prone or error-free scenarios
skews the result. Imagine a method that predicts a quantity in
direct sun well, but in indirect lighting poorly. The same analysis
done for a North facing facade in the northern hemisphere will
show high error, but moving the scene to the southern hemisphere
will eliminate the error. This type of distribution bias is present in a
number of studies that erroneously claim illuminance can be used
as a general replacement for image-based glare metrics, see Wasi-
lewski et al. [34] for examples. Another issue, for metrics like Ev
with magnitude spanning multiple orders, is that the magnitude
of the error may not be independent from the magnitude of the
metric. An absolute or square error will mostly reflect high value
errors, but if a percentage error is calculated, then low value errors
will dominate. Both of these issues can be mitigated by splitting
the error quantification, because at least then the error-prone
regions can be identified. A number of the validations reviewed
in Section 1.2 do this by categorizing the conditions in some
way, including by sky condition, sun visibility, measurement point,
and transmitting material.

The approach taken here is to bin the data by each metric’s ref-
erence value and then calculate the error for each of these bins.
Assuming enough samples exist in each bin to calculate a reliable
estimate, then the result is an error profile that does not depend
on the distribution of conditions in the reference data set. The
binned errors are used to calculate a normalized mean. Taking a
mean of the bin means yields an average that is equivalent to a
weighted average, where each sample is weighted by the recipro-
cal of the number of samples in its bin. UGP and DGP errors are
quantified by MSD and MAE. Both are grouped into 8 bins split
at (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8), such that the global mean is uni-
formly weighted from 0.2–0.8 and the low and high regions are
weighted by half. Ev error is quantified by MSPD and MAPE. Ev val-
ues are grouped into eight bins split at (75, 150, 300, 600, 1200,
2400, 4800) such that the global mean error is weighted uniformly
by the log Evð Þ from 75 lux to 4800 lux. Mathematically, the distri-
bution normalized error can be described as:

errordn ¼
Xnb
j¼1

Xnj
i¼1

Dxi
nj

nb
; ð2Þ

where nb is the number of bins, nj is the number of cases in bin j; i is
the case, Dxi is the deviation of the value at case i. For MAEdn,
Dxi ¼ xi;test � xi;ref

�� �� and for MSDdn, Dxi ¼ xi;test � xi;ref .
3.4. Efficiency analysis

Simulation time is heavily dependent on parameter selection,
and a single parameter selection, which, even when carefully con-
sidered, may not yield the most efficient process. The parameters
for both raytraverse and 2-phase were initially chosen to prioritize
accuracy. To complete an efficiency analysis, both workflows were
repeated with a steady degradation of parameters to generate an
efficiency curve, plotting time vs. error. Some parameter sets that
are not the fastest for a given accuracy level (what, in an optimiza-
tion problem, would be called Pareto dominated) were tested, but
discarded. For the 2-phase workflow, it turns out to be much more
efficient to reduce the image resolution compared to any rendering
parameters because this also speeds up evaluation. Table 1 gives
the full range of included parameter sets. Options are sorted by
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simulation time and labeled beginning with ”A”, from slowest to
fastest. Corresponding letters between raytraverse and 2-phase
do not correspond to similar simulation times.
4. Results

The reference, 2-phase, and raytraverse workflows are each
evaluated for three metrics (UGP, DGP, and Ev), four points, two
view directions, and 4,294 sky conditions. Fig. 11 shows individual
results, grouped by view, comparing the reference simulation to 2-
phase and raytraverse for UGP and DGP. Additional per view
scatter-plots can be found in appendix A of the supplemental
materials. Similarly, Ev is shown only in the supplementary mate-
rials because its pattern of errors is quite similar to DGP, which
because of the high glazing transmission, is dominated by satura-
tion effects in a large majority of the included cases. For each
method, three parameter sets are shown to illustrate the magni-
tude and nature of errors introduced by the parameter relaxation.
For the raytraverse method, the overall shape of the scatter plots
remains consistent, except with a wider spread and the noticeable
cluster of low values for view Z2, representing missed reflections
off of the interior of the glazing. The 2-phase parameter relaxation
shows the emergence of clear systematic errors for both UGP and
DGP, most visible for views O1 and Z2, where the direct sun and
specular reflections are frequently visible.

In order to quantify what the scatter plots show and to insulate
the reported error from the frequency of tested conditions, the data
is binned and normalized according to the procedure described in
Section 3.3. Fig. 12 shows the distribution, based on the reference
results, of the test conditions for each metric. The distribution of
DGP values in particular show why normalization is needed to
get a useful overall error quantification. A third of all conditions
have a DGP value below 0.2, which is outside the validated range
of the metric and well below any standard glare detection thresh-
olds. Certain combinations of view and metric values have few
cases, but across all the views, the tested scenario has a minimum
of 591 cases for each bin with contributing cases from at least five
different views.

Table 2 shows the MAE and MSD for the same three parameter
sets from each workflow shown in Fig. 11. The parameter sets
include the highest quality parameters, then a middle run and fast
run for each workflow. At all three levels the raytraverse runs are
four to six times faster. These tables quantify what the scatter plots
illustrate: raytraverse remains generally reliable throughout the
parameter relaxation with a small increase in error across all met-
ric magnitudes. There is a tendency towards a positive bias for illu-
minance values less than 600 lux and towards a negative bias for
UGP and DGP. The 2-phase method is susceptible to negative bias
across all metrics for the fastest parameters and is error prone for
high magnitude values for all metrics. By averaging the error met-
rics calculated for each bin, a normalized error gives a summary
metric describing the overall accuracy of the method/parameters
independent from the frequency of conditions.

The reason for relaxing the parameter at the cost of accuracy is
to reduce the simulation time. For an image (or LightPoint) based
daylight coefficient process the total simulation is a combination
of first: rendering the sky, direct sky, and sun contributions, and
second: applying the sky matrix, combining the components, and
evaluating the result for the metrics. The timing of both parts is
dependent on the number of samples, hardware and software ver-
sions used, processor load, and executive scripts used to run the
process. Only the rendering steps are dependent on the model size,
scene complexity, and rendering parameters, except where the
scene complexity requires a higher resolution of output samples
(either automatically, in the case of raytraverse, or manually



Table 1
Table of tested raytraverse and 2-phase parameter sets. Ranges give initial and stopping resolutions, the grid side is the number of samples per square side of the sampling space,
so 64 would be a 64x128 resolution to sample a sphere. src. res. is the resolution for solar source direction sampling. sky and sun ray res. is the resolution for directional sampling
with each of those sources. -ad varies by parameter set and the -lw parameter is set to 0.4/ad. The shared Radiance parameters for both methods are: for the sky: -u+ -ab 14 -av 0 0
0 -aa 0 -as 0 -dc 1 -dt 0 -lr �14 -ad -st 0 -ss 1 (with -ab 1 for the DDC component) and for the sun: -u+ -ab 0 -av 0 0 0 -dc 1 -dt 0 -st 0 -ss 1.

label accuracy sky-patches src. res. ad sky ray res. sun ray res.
(threshold) (degrees) (grid side) (grid side)

raytA 0.5 1296 10–1.25 130,000 64–1024 64–1024
raytB 1.0 324 15–1.88 65,000 64–512 64–1024
raytC 1.0 324 20–2.5 32,500 64–512 64–1024
raytD 1.0 144 20–2.5 14,500 64–512 64–1024
raytE 1.0 144 20–2.5 14,500 32–512 64–1024
raytF 1.0 144 20–5 7,250 32–512 64–1024
raytG 2.0 144 20–5 7,250 32–512 64–1024
raytH 3.0 144 20–5 5,000 32–256 64–512

sky-patches sun patches ad image res.

2phsA 145 5186 8000 900
2phsB 145 5186 1000 400
2phsC 145 5186 1000 300
2phsD 145 2306 1000 300
2phsE 145 5186 1000 250
2phsF 145 5186 1000 200
2phsG 145 2306 1000 200
2phsH 145 5186 1000 150
2phsI 145 5186 1000 100
2phsJ 145 2306 1000 100
2phsK 145 5186 1000 50
2phsL 145 2306 1000 50
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through knowing a higher resolution image is needed). Table 3
gives the rendering and processing times for both methods in real
clock time per view location (2 views), as each location in this case
is an independent simulation. Both methods were run on the same
computer: a 2018 MacBook Pro with Intel 2.9 GHz Core i9 proces-
sor (6 cores w/ hyperthreading), 16 GB RAM, and a solid state hard
drive. Image based simulations were run using Radiance 5.4a
(2021-02–07). Raytraverse simulations used Radiance 5.4a (2021–
08-29)5. This is 2.1 times slower than the fasted entry on the bench-
mark page. Both processes were parallelized on 12 threads for ren-
dering, combining, and evaluation, but not sky matrix generation.
Wherever possible this was done using the -n 12 flag of rcontrib,
otherwise it was done using a ProcessPoolExecutor in Python 3.7.
For the 2-phase image method, the Python code is just to start par-
allel os system calls using the subprocess module and does not intro-
duce the overhead of running computations in Python. Raytraverse is
written mostly in Python, so some calculation steps that do not use
numpy or other C/C++ bindings, suffer the overhead of the uncom-
piled language.

The reference simulations were produced only as a benchmark
for accuracy, so comparable computation time was not controlled
for. The reference simulations were run on a remote cluster
installed with Radiance 5.3a (compiled 2020–08-21), and evalu-
ated locally. Based on running one image for each view locally
with the reference settings, the timing to generate an image per
processor was 10% faster on the server. As a rough approximation,
the reference simulation and evaluation took 16 times longer
than the full resolution 2-phase (2phsA) simulation and evalua-
tion, adjusting for number of processors and single thread time
for one image.

The summary normalized MAEdn and MSDdn are plotted against
simulation time in Fig. 13. Both methods are able to to reproduce
the reference results with minimal bias and error using high qual-
ity parameters. The 2-phase method can maintain this accuracy
5 Using a previous 5.4a release, this hardware achieved a time of 174.61 s using 12
threads on the Radiance SMP Benchmark Results (http://markjstock.org/pages/
rad_bench.html, accessed: Feb. 23 2022)
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with a 14 times speedup by lowering the image resolution, but fas-
ter parameter sets introduce increasingly significant errors across
all metrics with significant negative bias for UGP and DGP. Raytra-
verse avoids any bias with magnitude greater than MSDdn 0.02, and
the introduced MAEdn rises much more slowly than for 2-phase.
For the fastest raytraverse parameters, similar accuracy can be
achieved 17 times faster than 2-phase for UGP and DGP and eight
times faster for Ev.

5. Discussion

This study assesses each workflow run with a number of param-
eter sets. Given the number of parameters exposed by Radiance, it
is important not to think of any workflow as having a set simula-
tion time or accuracy, but rather offering a trade-off between time
and accuracy given a certain simulation scope. The reliability of the
method is assessed by how well it maintains accuracy as parame-
ters are deteriorated.

The 2-phase DDS method was chosen as the comparison test
method for this study because it could reliably reproduce the
results from the reference simulation with proper parameter
selection. The problem is that this takes a very long time (7 h
20 min/point with the hardware previously described) to simulate.
The parameter relaxation revealed that there are limits to how
much the key parameters driving simulation time (-ad and image
resolution) can be reduced before systematic errors are introduced.
For the normalized distribution of conditions used in Fig. 13, this
becomes noticeable for UGP and DGP at around 15 min. However,
examining the 2phsD UGP scatter plots in Fig. 11 shows a region of
systematic under-prediction for two of the views. It is likely that
for scopes with a large number of hours where a specular view
of the sun is present, the 2phsB parameters (400x400 pixels) would
yield a noticeable bias leading to under-prediction of both contrast
and saturation. In scopes without any direct sun and generally dif-
fuse conditions, the 2-phase DDS method is likely reliable at even
the lowest parameter sets tested here, but in that case little image
information is gained compared to a sensor point calculation
which would offer further time savings.



Fig. 11. UGP and DGP scatter plots for high (raytA, 2phsA), medium (raytE, 2phsD) and low (raytH, 2phsL) quality parameters (see Table 1). Views are described in Fig. 10.
Note that mathematically UGP cannot be less than 0.1435.
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Table 2
Error tables. As the average of all the rows the errordn is the distribution normalized error defined in Eq. 2. Tables with error by view and magnitude can be found in Appendix A of
the care defined in Table 1.

Fig. 12. cases per view and metric range based on reference simulation values.
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The raytraverse coupled 2-phase workflow appears to be reli-
able for calculating UGP and DGP even at the fastest parameter sets
tested, yielding distribution normalized low-error unbiased results
for the complete set of conditions in around 1.2 min/point. How-
ever, two issues suggest interpreting this result cautiously. First,
the scatter plot for raytH UGP in Fig. 11 shows a systematic under
prediction for cases with reflections off of the interior of windows
(view Z2). Second, most obvious for view Z1 R (the most interior
view), the scatter plots have noticeable clumps of conditions. These
are due to systematic under or over predictions driven by the sky
17
coefficient results. Overall, it appears that the adaptive sampling
approach used by raytraverse can reproduce the results of high-
resolution grid based approaches to calculate contrast and satura-
tion based metrics. Coupled with the means for storing and evalu-
ating non-uniform sampling data, described in Section 2.3, it
enables the accurate evaluation of large spatial–temporal domains
with a high effective resolution.

Both of the tested workflows, raytraverse and 2-phase, are built
on top of the same models and parameters as the reference simu-
lation workflow. While this setup introduces some important lim-



Table 3
Simulation processes in minutes/point. Times reported separately for rendering and
evaluation. Speed-up is relative to full resolution 2-phase simulation (time 2phsA/
time), which is itself approximately 16.3 times faster than the reference. Parameter
sets are defined in Table 1.

raytraverse Speed-up Total Rendering Evaluating

raytA 6 70.1 63.5 *6.6
raytB 22 19.5 17.6 1.9
raytC 40 10.9 9.2 1.7
raytD 72 6.1 4.7 1.4
raytE 106 4.1 2.9 1.2
raytF 152 2.9 1.8 1.1
raytG 275 1.6 1.0 0.6
raytH 378 1.2 0.7 0.5
2-phase
2phsA 1 437.6 352.0 85.7
2phsB 14 32.3 16.3 16.1
2phsC 22 19.9 9.6 10.4
2phsD 26 16.7 10.0 6.7
2phsE 27 16.0 9.7 6.3
2phsF 35 12.7 8.7 4.0
2phsG 44 9.9 6.9 3.0
2phsH 44 10.1 7.8 2.3
2phsI 52 8.4 7.3 1.0
2phsJ 70 6.2 5.5 0.8
2phsK 70 6.2 5.9 0.3
2phsL 81 5.4 5.2 0.2

* Evaluating raytA was limited to six threads due to memory constraints.
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itations on what can be concluded, it also introduces opportunities
to attribute the source of errors and therefore the broader applica-
bility of the validation results.
5.1. Error attribution

For high quality settings across all bins of illuminance values,
this validation found average errors of less than or equal to 2.0%
for raytraverse and 3.2% for 2-phase. This error controls for light
measurement errors as well as material, geometry, sky and obser-
ver models as well as parameter optimization. The remaining error
is attributable to the differences in implementation. For the 2-
phase DDS method, this includes the discretization of the sky into
patches, a fixed grid of sun positions, and a sky patch to estimate
the indirect contribution from the direct sun. In addition, raytra-
verse differs from the reference by adaptively sampling view rays
and sun positions.
Fig. 13. Efficiency curves plotting time (real minutes per point) vs. error for each metric
other detailed figures and error tables. Parameter sets are defined in Table 1.
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The errors found here are an order of magnitude smaller than
the 10–20% relative errors found in physical measurement valida-
tions of similar CBDM methods [25,17,18,26,19,20] implying that
most of the error found by those studies is introduced upstream
from this validation, for example in the models and measurement.
This isolation of the errors introduced by the 2-phase and raytra-
verse methods allows for pinpointing possible sources of these
errors.

Within the scope of this validation, the two most difficult con-
ditions to accurately simulate with shorter simulation times are
specular reflections and deep interior views. For deep interior
views, the errors are most apparent for Ev. The issues stem from
under-sampling, both failing to resolve apparently small windows
or patches of sun and finding sufficient indirect ray paths. At a cer-
tain point, resolving these areas in higher detail simply requires
more sampling, but the lower error and bias observed for raytra-
verse compared to the fixed resolution 2-phase shows that even
in these conditions, the adaptive sampling improves results.

Regarding reflections, the 2-phase method is only reliable for
the highest quality settings. This is because, in order to ensure that
a pixel sample will strike a reflection of the sun, which has a diam-
eter of 0.533 degrees, the width of a pixel must be less than the
diameter divided by

ffiffiffi
2

p
(0.376 degrees). For an 180 degree angular

fisheye, pixels begin to exceed this threshold when the image is
smaller than 500x500 pixels. Raytraverse partially avoids this by
sampling for potential reflections at a resolution of 512x512 sam-
ples per hemisphere, but only when the sky sampling provides a
reliable guide of potential reflections. At view Z2, this proved diffi-
cult because the dominant contribution in the reflection direction
is not the reflection, but the view to the sky beyond. At fast set-
tings, this area is not reliably sampled. Because these conditions
were run for the reference set with both -ps 1 and -ps 3, there is
a useful benchmark to contextualize this error. For these 98 condi-
tions, -ps 3 introduced a �0.05 MSD in UGP. A similar level of bias
is maintained for 2phsA-C and raytA-C. Future work on raytraverse
will look to explore additional techniques for marking potential
reflections.

5.2. Limitations

Among the most important limitations, and true of all simu-
lated reference validations, the observed deviation from the refer-
ence must be assumed to be additive with whatever error the
reference has to the true conditions. The true error, especially in
. The left plot (UGP) labels the three parameter sets for each workflow included in
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this case where the workflows use the statistically derived TMY
data and the statistically modeled Perez sky model, cannot be
known. However, this is an important use case as it is the most
commonly used source sky data for CBDM. Results from TMY data
do not match any observable reality, but they do provide a set of
conditions that are likely sensitive to changes in the same way as
reality. For this reason, simulation results are better interpreted
as relative values (between options, sites, buildings) rather than
absolute values [35].

Another limitation is that where a scene or observer model does
not behave similarly the validation is not valid. For example, con-
tinuous and gradually changing distributions (such as the Perez
model) may be accurately represented with a small number of
sky patches and coarser indirect sampling (the -ad parameter in
Radiance). These same settings would not be valid for discretizing
a sky with more abrupt changes, such as an HDRi sky including
bright clouds or a complex horizon line.

Because currently accepted daylight glare metrics do not
depend on light spectrum, raytraverse stores all results in a single
luminance channel. Recent research suggests that color does play
a role in discomfort glare [36], and ongoing research under daylit
conditions also suggests that color is a factor [37]. Depending on
how this is accounted for in future daylight glare metrics,
raytraverse can be extended to either maintain color information,
or in the case that spectral rendering is needed and has a signifi-
cant variation across a scene could even be adaptively sampled
using the same wavelet based methods.

As covered in Section 1.1, efficient methods for calculating
specific glare metrics exist that bypass finding a full solution to
the daylight incident on a view. These methods can, for some cases,
including most of the conditions in the case-study, generate accu-
rate results in less time than the comparison simulation. On the
other hand, those methods provide a more limited set of informa-
tion. As raytraverse is intended as a more general purpose sampler,
this study does not cover whether it would offer any benefit to
workflows that directly target the inputs to specific glare metric
equations, like eDGPs, ClimateStudio annual glare, and dcglare.
6. Conclusion

This paper presents a new simulation method, called raytra-
verse, for sampling daylight conditions in architectural spaces. Like
other daylight coefficient approaches, the time dimension is trea-
ted as a collection of source directions, using a precomputed sky
matrix to recover the time-steps. In addition to explaining how
raytraverse works to adaptively sample the directional, source,
and positional dimensions of an analysis scope, a simulated refer-
ence validation demonstrates the efficiency of these methods com-
pared to a uniform sampling CBDM approach for the directional
and source sampling. It remains for future work to validate the
positional sampling, which will require high-resolution reference
data in both positional and source direction domains.

To increase the robustness of this validation, which is done for a
single real world case-study of a typically complex design model
used in practice, new strategies are proposed. The reported error
metrics are insulated against possible biases introduced by the par-
ticular distribution of the cases and the methods to be validated
were run for a wide set of quality parameters to determine the effi-
ciency of the method. By comparing the accuracy of metric values
directly and not glare predictions by threshold, the validation is
less limited by site and glazing transmission, it is only limited by
the nature of the lighting pathways taken from source to eye. Cou-
pled with the previous validation looking across a range of trans-
mitting and reflecting behaviors [1], we have shown that
raytraverse can produce reliable annual results across a wide range
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of daylight conditions, including those particularly challenging for
adaptive sampling. Assessed as a comparison method, the 2-phase
DDS for image-based glare metrics is most limited by image reso-
lution, both in terms of accuracy and time. Results are reliable for
image resolutions greater than 400x400 pixels for a 180 degree
angular fisheye.

The simulated reference validation of raytraverse, shows that
view-based metrics can be calculated with reasonable computa-
tional expense, with less than 0.02 for UGP and DGP and less than
5% MAPEdn for Ev. These lower errors are a more appropriate
benchmark for simulated reference validations than the higher val-
ues of 10%-20% reported by physical measurement reference vali-
dations, where the captured error includes many factors outside
the scope of the simulation algorithms. Compared to the uniformly
sampled comparison method, raytraverse achieved these bench-
marks in one-seventeenth the total time. This is the same as the
speed-up gained by using a 2-phase approach instead of the per
time-step simulations used by the reference method, the founda-
tional method enabling CBDM. For the cases tested here, this trans-
lates to simulation times of 75 seconds per point on a modern
laptop. Given the complexity of the modeled geometry and open
plan requiring a high number of ambient bounces for convergence,
it is expected that the models often used as examples in other sim-
ulation method research and early stage design will take even less
time. Extending raytraverse to the equivalent of a zone-based anal-
ysis should offer even greater time savings, both from the applica-
tion of the same adaptive sampling techniques to positional
variance and the potential to couple the sampling with rendering
methods that take advantage of previously computed values, such
as ambient caching or photon mapping. Although, it is possible
that some of these savings are overlapping, as they both achieve
efficiency by re-using precomputed samples. Perhaps more
promising is the potential to couple raytraverse with faster hard-
ware solutions, like GPU rendering, as the time savings of these
two approaches should be complimentary: raytraverse can reduce
the number of samples, and GPU rendering can reduce the time
needed to calculate these samples. There is now a practical path
to developing tools for the zonal analysis of high-accuracy contrast
based glare and other visual comfort metrics that currently require
image generation, or are limited to a subset of metrics and poten-
tial glare inducing scenarios.

Future work should explore the extent of these additional time
savings for zonal analysis, as well as the performance of the
method under different conditions. These include: simpler models
typical of early stage design, dynamic shading controls, the inclu-
sion of electric lighting, and spectral rendering.
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