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Abstract:   

This study presents optimization approaches by a recent Climate-Based-Daylight-Modeling tool, 

EvalDRC, to figure out the necessary area for a daylight redirecting micro-prism film (MPF) 

while minimizing the glazing area. The performance of a window in terms of spatial Daylight 

Autonomy (sDA) is optimized by its geometry and optical properties. Data implemented in 

simulation model are gathered through on-site measurements and Bidirectional-Scattering 

Distribution Function (BSDF) gonio-measurements. EvalDRC based on Radiance with a data 

driven model of the films’ BSDF evaluates the window configurations in the whole year. The 

case to achieve an sDA of at least 75% is a South-facing window of a classroom in Switzerland. 

A window zone from 0.90 m to 1.80 m height provides view to the outside. The upper zone from 

1.80 m to 3.60 m is divided into six areas of 0.30 m height in three optimization approaches 

including the operation of sunshades as well. First, the size of the clear glazing is incrementally 
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reduced to find the smallest acceptable window-to-wall ratio (WWR). Second, micro-prism films 

are applied to an incrementally varying fraction the initial glazed area to determine the minimum 

film-to-window ratio (FWR). Finally, both approaches are combined for a minimum FWR and 

WWR. With clear glazing and WWR of 75%, the sDA of 70.2% fails to meet the requirements. 

An sDA of 86.4% and 80.8% can be achieved with WWR 75%, FWR 1/9 and WWR 50%, FWR 

1/2 respectively. The results demonstrate the films’ potential to improve the performance of 

windows with reduced WWR.  

Keywords: daylight; redirection; sDA; window design; BSDF; Radiance.   

1. Introduction 

The utilization of daylight in buildings has been a significant concern to reduce the electrical energy 

demand for lighting and cooling of buildings [1]. Such widely known benefits of daylight’s presence 

are better work/or learning performance, motivation and health. However, to achieve these goals, it is 

necessary to control its negative impacts such as visual discomfort and glare [2,3]. The recognized 

importance of daylight in buildings is contrasted by the inconsistent use of terminology and planning 

tools by practitioners, mostly based on rules of thumbs especially in the early design stage [4]. 

Climate-Based Daylight Modeling (CBDM) allows quantitative performance predictions based on 

local weather data. The resulting annual records of illuminance are reduced to comprehensive annual 

metrics such as Useful Daylight Illuminance (UDI) and Daylight Autonomy (DA) [5,6]. UDI defines 

both lower (100 lux) and upper (2000 lux) boundaries for horizontal illuminance to be counted as 

useful, while DA considers only the lower boundary. DA, is an annual, task-illuminance based metric 

of daylight performance [5-7]. It is recently named as spatial daylight autonomy (sDA) by IES; and is 

defined as “the percent of an analysis area that meets a minimum daylight illuminance level for a 

specified fraction of the operating hours per year” [8].  In other words, it reveals the adequate daylight 

on workplane area throughout the year. sDA considers not only the temporal but also the spatial 

dynamics of daylight in buildings. It has been recommended for the evaluation of entire occupied 
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spaces in combination with Annual Sunlight Exposure (ASE), replacing the fixed upper boundary of 

UDI by an indicator of direct sun penetration into the occupied space. IES definition of ASE is “the 

percent of an analysis area that exceeds a specified direct sunlight illuminance level more than a 

specified number of hours per year.” [8]. By all means, it is an indicator for visual discomfort and the 

amount of direct sunlight which hits the workplane in the whole year.   

 

The most initial and relevant concern which is analyzed here has become the window design; since, the 

opening characterization determines the amount of daylight penetration and the path of its distribution 

inside the room. The basic design indicator to denote its performance is window-to-wall-ratio (WWR). 

It is an instructive parameter in making design decisions due to its numerical simplicity but its 

complexity in extracting thermal, visual and environmental consequences/or information in 

architectural design. The impact of window geometry and methods to optimize window size and 

optical properties of glazing for thermal and visual performance have been demonstrated using 

computational simulation [9-13]. 

 

Complex Fenestration Systems (CFS) enhance the daylight performance of buildings. Redirecting 

daylight from the often overexposed building perimeter deeper into the occupied space, they reduce 

discomfort close to the façade and distribute daylight evenly. The technology allows substituting 

artificial lighting by daylight even in deep plan buildings [14]. The integration of such systems’ within 

the façade has been identified as a major obstacle to wide-spread application. The miniaturization and 

integration into double glazing units of CFS such as micro-prism films (MPF) and acrylic lamellas 

address this challenge and ease both installation and maintenance, and allow applications in building 

retrofits. MPF are assemblies composed of micro structured prisms on an optical film. The 

performance of such systems for the case of side-lit spaces has been compared through simulations and 

monitoring of experimental setups [15- 18].  
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The optical characterization of a CFS and conversion into models for use in Radiance [19-21] are 

further research areas. Previous studies involved measurements of the optical properties of CFS using 

specialized instruments in laboratories [22, 23], using virtual instruments [24] and their integration in 

performance assessments [25]. Measurements display their behavior in refracting, reflecting and 

redirecting the light at certain angles. That outcome is called the Bidirectional Scattering Distribution 

Function (BSDF) data. This is a kind of indicator which quantifies how light scatters as a function of 

light incident direction. This concept involves reflection and transmission distributions on any type of 

materials (specular, non-specular). Several experimental studies and recent approaches deal with its 

use in the field of daylight performance and its integration in daylight simulations [19-21]. 

 

In view of the recent and ongoing research mentioned above, evaluations about the application details 

and performance of CFS have been continuous broadly, however, it is also necessary to widen the 

research to relate their design, function and integration to architectural considerations, one of which is 

specifically is the window design in this study. Thus, the optimization problem, here, is to achieve the 

necessary MPF area while minimizing WWR to meet the required sDA value which is 75 % (denoted 

as preferred value by IES). In this case, obtaining essential MPF area means to reach the minimum 

film-to-window ratio (FWR). This is a case study which covers design alternatives of the glazed area 

with the integration of MPF. Specifically, the case room is typically has large window area (WWR is 

75 %) and the floor aspect ratio is almost 1. The daylit area is satisfactorily large but may cause 

discomfort glare and overheating. So, it may be necessary to improve daylight performance and 

environmental conditions with the application of MPF in window area. Utilizing such integration, it is 

crucial to find the minimum size of the glazing area to satisfy the 75 % of sDA in the city of Lucerne, 

Switzerland. This study involved discussions about the design variants of MPF size to be mounted in 

the fenestration in a specific location and under sky/climatic conditions in Lucerne. The main 

performance indicator is sDA. However, to compare findings between variants and to construct a deep 

and full understanding of MPF performance, ASE, msDA (monthly daylight autonomy) and MSE 
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(monthly sunlight exposure) were assessed. The application of dynamic sunshade in simulations 

provided avoidance of direct sunlight due to climate data. The outcome of this was the percentage of 

sunshade operation during the year. To test the film’s performance annually, it might be possible to 

reach valuable design information about the most appropriate way of using MPF within a glazed area 

for such rooms.     

2. Experimental Set-up 

2.1. Description of the Case Room 

The case room (classroom for students of architecture) is located on the second floor of a building of 

the Lucerne University of Applied Sciences and Arts, Switzerland. The building is situated in a 

campus, in Lucerne (latitude 470 0’ N; longitude 80 18’ E) at an altitude of approx. 436.00 m over sea-

level. The campus is about 5 km South of Lucerne. The climate of the city can be identified as cool-

humid according to ASHRAE International Climate Zone Definitions [26]. The room facing South is 

approx. 80 m2 (9.05 X 8.80 m) and its story height is 3.60 m. The actual window configuration and the 

room’s basic layout are shown in Fig.1.  

2.2. On-site Measurements 

Illuminance and spectral measurements were taken at varying hours during the days from August 11 to 

August 14, 2015, under clear, intermediate and overcast sky condition.  

 

The measurement procedure was based on recommendations and experience in accordance with IES 

and previous studies [8, 27-29]. First, it included measurements of horizontal work plane illuminance 

using a radiometer/photometer with a silicon detector attached by a flexible cable. The detector is fixed 

on a tripod to satisfy a constant height which is 0.95 m from the floor level. This is higher than the 

recommended ones (0.75 m) but is specifically in accordance with the desk-height inside the room. 

The number of measurement points is based on daylighted zones and distance from the windows [29]. 

“A large classroom may require three zones, with three test points at each zone to represent 
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illuminance at the front, middle, and on the back of the classroom” [29]. However, to increase the 

accuracy, the requirements of IES about analysis points in simulations are additionally followed. Thus, 

spacings of measurement points are multiplications of 0.60 m as IES suggests a “two-foot analysis 

grid” [8]. Measurement points match the sensor grid (Fig1b) which is centered on the workplane. To 

capture daylight illuminance variations across the room, points are aligned more densely through the 

room depth. So, the grid is taken 0.80 m away from walls and a total of 21 measurement points are 

displayed in Fig.1(b).  

 
The solar conditions are obtained from a local pyranometer—solar measurement station, which is 

mounted on the roof of the case building. It records averaged global (GHI_Avg in W/m2) and diffuse 

horizontal irradiance (DHI_Avg in W/m2) in one minute intervals.  

 
 

Figure 1 (a) Window configuration; (b) Measurement points and sensor plane (the red grid). 
 
 
Second, this procedure involved spectral measurements of reflected light from a surface material using 

spectrophotometer. They provided the remission spectrum of a sample which was embedded in the 

daylight simulation model to identify the surface spectral reflectance. The device is connected to a 

separate probe using a flexible cable and operates with software to collect and store the sample data in 

the computer.  The measurements were taken on wall, floor, ceiling, desk, shelves and window frames. 

The glazing transmissivity (0.85) is calculated and is based on the transmission of a typical double 

glazing unit (0.78) taken from the International Glazing Database IGDB [30]. The IGDB in 

conjunction with LBL Window 7, which has a recent release of the DB integrated, is used [31]. 

2.3. BSDF Measurements 

The instrument which measures BSDF data is called the scanning goniophotometer whose extensive 

use and its operational capabilities also, are cited in literature [32,33,34]. The measurement process 

follows similar approaches in the previous studies [22-24] and recommendations in the standard [35]. 
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The goniophotometer has three main parts; the light source (source), the sample holder and the 

detector (receiver) [32].(Fig.2a) To avoid stray light, it is located in a dark room. A baffle made of 

anodized metal separates the light source (a halogen lamp or a xenon lamp) and an optical bench from 

measurement area. The sample holder and the detector are behind the baffle in the dark room. A hole 

inside the baffle allows the passage of light beam to that side.  The sample with a size up to 1.00 m by 

1.00 m can be placed in the sample holder defining the 00 orientation. The sample holder is rotated in 

its y-axis to determine θ-angles (corresponding to the altitude) using remote control, while it is 

necessary to rotate in its x-axis (that is the normal line of its flat surface) to set ϕ-angles 

(corresponding to the azimuth) by hand. These rotation angles are marked on the holder for the ease of 

use and precision. Fig.2b is the 3D representation displaying how light is transmitted on the sample 

surface with designated angles.   

  
Figure 2 (a) Sketch of a goniophotometer; (b) Transmissive sample with source direction (θi; ϕi), 

receiver direction (θs; ϕs) and sampling aperture A. 
 

The detector head is connected to the sample holder and rotates around it inside a virtual sphere to 

capture the light beams which are reflected and transmitted, when the light beam hits the sample. The 

back part of the sample holder is the transmittance hemisphere and the front is the reflectance 

hemisphere. The head focuses on a certain region, in this sphere, where the density of light beams is 

concentrated according to the incident angle. The software performs the remote control separately. The 

light source, a halogen lamp, is switched on. The incident angles and the choice of detector are set 

using the software; the measurements performed. The number of runs which the detector scans the 

hemisphere depends on the resolution. The smallest the light beam, the highest the resolution. In 

higher resolutions, it has higher peaks. The air temperature of the environment is controlled and set to 

230C to achieve appropriate measurements. The outputs are the numerical data and graphical 

representation of light-rays-mapping in a virtual hemisphere for each angle. A reference measurement 
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is also performed without the sample at the end of the measurement sessions, as recommended in a 

previous study.   

 

In this study, a total of 30 set of measurements were performed. The θ-angles which indicate the 

incidence directions are 00, 150, 300, 450, 600 and 650. The φ-angles are 00, 450, 900, 1350 and 1800. The 

diameter of the light spot caused by the light beam on the sample, when it is mounted on its 0 0 

orientation, is approx. 35-40 mm. The sample is a light redirecting film which is composed of micro-

structured prisms attached on an optical film (Fig.3) and named as micro-prism film (MPF). They are 

aligned between two glass panes to redirect/refract daylight to the ceiling and to provide transmission 

of light deeper in the buildings. Its thickness is approx. 300 microns. It is also used as a sun shading 

device. Such weaknesses found out in previous studies are their inefficient performance under overcast 

sky conditions, or on north facades or obstructed windows; and reducing the view to the outside. 

However, its strength is its efficient use in the upper part of the window when it receives direct 

sunlight [16,36].  

 
Figure 3. Schematic section of a MPF and daylight redirection. 

 

3. Simulation Model Construction 

3.1 Geometric Model  

A geometric model of the case room was created using Ecotect (Fig.4a). Dimensions were taken from 

architectural drawings and on-site measurements. The units were set in millimeters. The existing room 

was arranged, as one zone including glazed openings with grey aluminum frames and furniture, to be 

used as the actual room model. Another geometric model was employed excluding the frames and 

composing the window area into segments, to be used as the optimization model. Each segment’s 

height is 0.30 m. Inner surfaces of the room, desks, shelves, window, frames and measurement points 

were set in separate layers. Furniture layout was modelled with equal spacing regularly as 

recommended in the IES standard [8]. Descriptive surface names were chosen for each layer to allow 
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the implementation of material identifications in the following simulations. The geometry was 

exported to Radiance Scene file (as the .rad-format).  

 

3.2 Reflection and Transmission based on Analytical BSDF Models 

The Ward-Dür reflection model as implemented in the plastic and metal material classes of Radiance 

describes reflection based on reflectance (separately for three color channels RGB), specularity and 

roughness [37]. Specularity and roughness were set to zero for the predominantly diffuse reflecting 

surfaces, only for the window frames these values were estimated. Three reflectance values for each 

sample were derived from on-site measurements using a spectrophotometer. 

 

The spectrophotometer used in this research records the remission spectrum of a sample relative to a 

standard with a highly reflective Barium Sulfate coating for wavelengths from 400 nm to 700 nm in 5 

nm intervals (Table 1). As the exact reflection spectrum of this standard is unknown, but can be 

expected to be higher than 0.96 in the considered wavelength range according to measurement of 

comparable coatings, the remission spectra were used in place of reflection spectra in the later 

calculations [38,39]. Color calculations are defined for a range from 380 nm to 780 nm, exceeding the 

range of the measurements. To achieve a basic extrapolation covering the full range up to 780 nm, and 

to provide a linear interpolation for wavelength in between the measured intervals, the tabular 

remission spectra were translated into functional descriptions using the Radiance command tabfunc. 

 

Based on these approximations, the XYZ tristimulus values for each sample under an equal-energy 

illuminant (CIE illuminant E) were calculated for a CIE 1931 2° observer [40-42]. The conversion of 

the tristimulus values to the expected RGB color triplets was achieved making use of the script 

xyz_rgb.cal as provided with Radiance. 
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As the spectrophotometer configuration limits its application to reflection measurements, the 

existing double-glazing had to be modeled based on values from literature. A center-of-glass 

transmittance of 0.78 was assumed for the visible light range, based on a typical double-glazing unit 

from the International Glazing Database IGDB. Radiance provides an optimized model for thin glass 

panes, allowing to model the glazing without a thickness by its transmissivity, which was calculated 

from transmittance [30,31].  

 
Table 1. Reflectance spectrum at 700 nm, obtained from surfaces on-site.  

 

3.3 Data-driven BSDF Model of Daylight Redirecting Glazing 

The irregular transmission characteristics of the daylight redirecting film applied in the study cannot be 

modeled as the transmission model for glass in Radiance. For redirecting, prismatic structures, two 

models for off-specular peaks exist with prism and prism2. However, both models imply limitations in 

the number and distribution of peaks, and cannot describe the diffuse transmission through the film. A 

recent addition to Radiance introduces a compact data-driven BSDF model, which is based on 

measured data and can represent virtually any possible, irregular BSDF for both transmission and 

reflection. The data-driven model reads a compact tensor tree from a xml-file and is fully supported in 

both the deterministic and the stochastic light transport algorithms. The tensor tree can be generated 

either from computed BSDF data, e.g. using the Radiance command genBSDF, or by interpolation 

from measured BSDF datasets [37]. 

 

The data-driven model was developed to represent daylighting devices with irregular BSDF. These 

typically comprise complex features such as peaks and rims, which need to be captured by the 

measurement in sufficient detail. One strategy for the measurement of such distributions is based on an 

asymmetric directional resolution of incident source directions and outgoing receiver directions. The 

characteristic features are highly resolved by scanning at high resolution for each incident source 

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
Accepted and published in Building and Environment, Vol 102, June 2016, pp 243-256, doi:10.1016/j.buildenv.2016.03.018



 11 
 

 

direction, leading to typically records for 100,000 – 200,000 receiver directions per source direction. 

As it is assumed that these features do not rapidly change when the source direction is varied, but 

rather get translated and blended, the number of incident source directions is kept low. The 

construction of a complete representation of the BSDF from the coarse set of this asymmetric 

measurement thus requires an interpolation algorithm maintaining the features and physical plausibility 

for any combination of source and receiver directions. Two commands in Radiance provide this 

functionality by implementing a mass-mover interpolation algorithm. First, the measured, discrete 

distributions are replaced by Gaussian interpolants. Second, the interpolants are sampled at a given 

resolution, leading to a discrete tensor tree representation of the BSDF. Third, a data-reduction 

algorithm is applied to locally adapt the resolution of the tensor tree to the variance found in the 

distribution. The compact tensor tree is then, annotated with meta-data from the measurement, written 

to an xml file that can be read by a variety of software tools. 

3.4 Measurement Points and Sensor Plane 

As the geometry of the room is exported from Ecotect into the Radiance scene file ( .rad file), the 

location of the measurement points are determined due to the origin in Ecotect file. Radiance applied 

the right-hand Cartesian coordinate system [37] based on that origin and located the points (Fig.4b). 

The numbers designate the distances in meters from the perpendicular lines (x-axis and y-axis) 

according to the origin as shown in Fig.4b. They are used to compare the illuminance read in the 

measurements and the values in Radiance model of the actual room. However, a new sensor plane 

(Fig.2) was generated in 0.30 X 0.30 m resolution including a total of 625 calculation points (25 X 25) 

for the further optimization process. This sensor plane was at 0.95 m height as it was in the actual 

model. 

 

Figure 4. (a) Geometry of the model for the optimization; (b) Distribution and 2D coordinates of the 
points. 
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3.5 Setup of Simulation Environment using EvalDRC  

EvalDRC (Evaluate Daylight Redirection Components) is a software to run annual daylight 

simulations based on Radiance daylight coefficient calculation with Enhanced Photon Mapping [43, 

44]. The inputs are Tregenza sky model for the hemispherical sky radiance distributions, Perez sky 

model with actual climate data for sky/sun patch radiances, a Radiance scene including geometry of 

the room,  micro-prism film, sensor points, and processing parameters including time, location, metric 

boundary values and Enhanced Photon Mapping and renderings etc. The significance of this tool is 

based on its definition of a separate sky patch and sun contribution patches to locate the sun as a direct 

light source on the hemisphere as it is in reality. The first step of this process is to configure the sky 

while determining cumulative sun primitives as separate 0.50 RADIANCE source primitives. The 

software completes this step with the inclusion and identification of sky patch and solar radiance 

distributions due to the location and time. The second step is to calculate the position of primary 

photons according to the path from the light source; to contribute each photon on the surface as the 

light sources and to evaluate their contribution by a modified photon density estimate on another 

surface which is named as the generation of photon maps. A simultaneous calculation is employed for 

the separate sky patch and sun contribution coefficients. The third step is to accumulate the scaled 

coefficients to get the illuminance values and HDR renderings. Finally, the reduction step is 

implemented to generate characteristic parameters of the daylight performance in the model.     

 

Outputs are illuminance, HDR images and sDA as defined by IES. To employ the Enhanced Photon 

Mapping, photon ports are modelled for all openings; virtual photon receivers overlay the sensor point 

grid to collect the caustic photons around the sensor; contribution photons are used to calculate 

multiple sun positions simultaneously; different illuminance distribution characteristics call for 

separate sky and solar photon maps to avoid noise in sky contributions near sunlit areas [45-47].  
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In this study, the Radiance scene generated from Ecotect optimization model (Fig.1b) was run by 

EvalDRC. A photon port and a sensor plane were located in front of the window area and above the 

measurement points. The Perez sky model based on weather data for Geneva, Switzerland was 

employed in the calculation process.  

 

3.6 Configurations of façade systems 

The façade of the geometric model (Fig. 4) is composed of one clear glazing segment which is 0.90 m 

high, six clear glazing segments each of which are 0.30 m high and an opaque wall area of 0.90 m 

high. Three optimization approaches were proposed to acquire the minimum WWR and MPF. The 

largest segment of clear glazing in the middle zone and the wall area below has been identical as in the 

base model. The first approach involves changing the segments of clear glazing in the upper zone to 

opaque wall as one by one row, starting at top. The second approach follows a similar procedure; 

however, clear-glazed segments are set to be micro-prism film (MPF). The third optimization 

approach, which is the combination of previous ones, defines the replacement of MPF segments with 

opaque wall segments. The performance indicator is sDA; while the others are ASE, msDA and MSE 

values. The required sDA is 75% as the preferred value regarding IES. Illuminance threshold is set as 

500 lux which is recommended for a classroom [48]. As the illuminance is the primary daylight metric, 

illuminance plots at midline across the room are used for complementing sDA results in understanding 

the daylight distribution and uniformity inside the room at specific timestamps (i.e. solstices, 

equinoxes) in detail. As UDI defines the upper threshold values unlike sDA, it is possible to analyze 

and discuss how illuminance fluctuates within the UDI range (500-2000lx); and whether excessive 

daylight values occur at any particular regions in the room or not. False color illuminance maps assist 

to present whether the daylight distribution is differentiated or not, applying the identical MPF area at 

dissimilar positions in two window configurations.   

4. Data Analysis 
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 4.1 Comparison of Measurements and Radiance Findings  

The comparison of actual daylight illuminance with the simulated ones showed that the simulation 

outputs were higher than the measurement ones (Fig.5). The first row which is located beyond 1m 

from the windows directly denotes the impact of transmittance of the glazing under direct sunlight; so, 

the RE between the Radiance outputs and the measured ones ranged from 13% to 42% in the sunny 

day. Linear regression analysis allowed estimating the relationship between the on-site measurements 

and simulation results. The coefficient of determination (R2) values were approx. 94% - 97% for the 

sunny and cloudy days; showing the high accuracy of the simulation model (Fig.6). Despite these high 

correlation rates, the simulated outputs were two times higher than the measured ones on the first row 

near the window in the cloudy day. Such an expected finding is supposed to be caused by the scattered 

pattern of clouds. The normalized-root-mean-square-deviations were calculated to compare these two 

data sets as below (1). The very low values of approx. 0.03 indicated very low residual variance. 

 

                                                               
          

                                                     (1)     

where NRMSD is the normalized-root-mean-square-deviations, RMSD is the root-mean-square-

deviations, ymax is maximum value of the data and ymin is the minimum value of the data. 

 
Figure 5. Comparison of measured and simulated results for (a) a sunny, (b) a cloudy (c) and (d) 

partly cloudy days.  

Figure 6. Correlations between measured and simulated results for (a) a sunny, (b) a cloudy, (c) and 
(d) partly cloudy days.  

 

4.2 Optimization of Window Size using EvalDRC 

4.2.1 The First Optimization Approach  

The first approach, which remains to be a regular window design, is demonstrated to understand how 

the reduction of clear glazing would result in varying daylight conditions and how much of WWR 
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would be decreased to reach the desired visual circumstances according to the required IES quantities 

mentioned in above section. Segments in the upper glazing are set as one by one row from clear 

glazing to opaque wall, starting at top (rw0-rw6 in Fig.7). It is known that sunshades are commonly 

preferred to avoid sun patch which disturbs vision. To correspond to the reality, the next step is to 

apply a static sunshade to cover clear glazing area. The sunshade is generated with a visible diffuse 

light transmission of 10 % which means that it blocks direct sunlight at any incident angle. A further 

application of a dynamic sunshade with on/off operations excluded the redundant use of the static one, 

considering annual climate data. A practical consequence of this dynamic integration avoids the 

unnecessary use of sunshade in overcast days. Such simulations provided the percentage of sunshade 

operation (Sshade) in the whole year. 

 

Fig.8 illustrates monthly breakdown of sDA, MSE and Sshade values derived from the first set of 

EvalDRC simulations. These findings are due no-sunshade, with static-sunshade and dynamic-

sunshade conditions. Each graphical representation depicts the quantity of sDA, ASE, and Sshade for 

the optimal window composition. The majority of the window variants except rw4, rw5, rw6, satisfy 

the sDA of 75 %, when there is no sunshade. The regular window with 50% WWR (rw3) meets that 

required value initially, resulting in 79.5% sDA. When the WWR is reduced from 75 % to 50%, a 

reasonable decline in ASE is observed (from 34% to 21%), meaning that, a 33% fall in WWR is 

proportionate to the decrease in ASE. The nature of designing window geometry reduces solar heat 

gain and results in less necessary shading. 

 

On the contrary, none of the variants is successful in passing the threshold sDA value when there is 

static sunshade. The values remain very close to zero. The sun shade operation has extreme effect on 

sDA values and completely blocks daylight when rw4, rw5, and rw6 are modeled (0-1% sDA).  

Figure 7. Schematic views of window variants in the first optimization approach (rw: regular wall; 
CG: clear glazing; W: wall) 
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Figure 8. Monthly breakdown of sDA for each window variant with clear glazing and opaque wall 
material. 

 
 

When dynamic sunshade is active, even the variant with the largest window size (rw0-the existing 

façade) causing 70 % sDA fails to reach the preferred criterion. In this case, reducing 75% WWR to 50 

% WWR leads to a 20% reduction in sDA, meaning that, sDA of rw3 is 52%. Implementing dynamic 

sunshade has become the reason of considerable declination in sDA, i.e. 79.5% sDA of rw3 without 

sunshade has turned to be 52% with an active sunshade. In addition, 30% of reduction in sDA (from 

99.8% to 70.2%) is observed when the the dynamic sunshade controls the existing façade composition 

(rw0). The ASE range remains similar to the non-shade compositions. sShade varied from 37.9 % to 

14.9 %, meaning that, shading operation is necessary during one third of the year when 75% WWR is 

considered. Consequently, the existing facade with the regular window cannot yet be able to satisfy 

sufficient daylight conditions in the whole year.   

4.2.2 The Second Optimization Approach  

The largest segment of clear glazing and the wall area are fixed identically in the base model. 

Segments in the upper glazing are set as one by one row from clear glazing to microprism film (MPF), 

starting at top (drc0-drc6 in Fig.9). As the 75% WWR is identical for each design variant, the objective 

is to figure out the possible minimum film-to-window ratio (FWR).  

 

Fig.10 presents the findings derived from the second approach in detail. The predominant finding here 

is the strong effect of MPF in every window case, when compared to the previous approach. The rise 

in sDA and msDA is clearly apparent in both non-shaded and shaded conditions as in Fig.10a-c. For 

example, the rate of improvement in sDA is approx. 130 % for rw4 (42.2% sDA) when converted to 

the variant drc4 (96.8% sDA) including MPF.  
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All window variants are extremely above the sDA of 75 %. (i.e. drc4 with 96.8% sDA and 15.5% 

ASE). Although the majority of them reached to a msDA of 100% over the whole year, they failed to 

satisfy the requirement in winter time (November, December, January and February). Even, they never 

meet the msDA of 50 % (satisfied value by IES) in December. The ASE rate is less, when compared to 

the first approach. Its distribution however, is similar to the previous optimization findings as a 

consequence of similar height of clear glazed segments in both optimization cases.    

 

Figure 9. Schematic views of window variants in the second optimization approach (drc: daylight 
redirecting component; MPF: microprism film; CG: clear glazing; W: wall). 

 
 

Figure 10. Monthly breakdown of sDA for each window variant of micro-prism film and clear 
glazing (a) without sunshade; (b) with sunshade; (c) with dynamic sunshade.  

 

The impact of the sunshade is dramatic; since only one segment of film (drc1) remaining open if the 

rest of the window area is covered by sunshade, already makes a big difference in daylight 

illumination. Converting the regular window variant rw1 into a film-glazed variant drc1 leads to a 

change in sDA of 15 % into 40%, depicting an improvement of approx. 160%. 

 

The impact of avoidance of direct sun light on daylight performance is strongly obvious when 

compared to the non-shaded composition (Fig.10b). The variant drc4 with 4/9 FWR passes 75% sDA 

firstly and has got 15.5 % ASE, when static shade is performed The sun shade operation has rather 

little to almost no effect on sDA values, if the MPF area is high, i.e. 4 or more segments covered with 

film. This reveals the shading behavior and high effectiveness of the film as well. Its shading 

characterization remains valid in this study. Such variants (drc3-6) meet the sDA of 75 % for the 

majority of the months and the year. ASE of zero indicates the full protection against sunlight as a 

means of solar gain and visual discomfort.  

 

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
Accepted and published in Building and Environment, Vol 102, June 2016, pp 243-256, doi:10.1016/j.buildenv.2016.03.018



 18 
 

 

Though, dynamic sunshade improved the sDA values for all variants, the sDA curves become closer 

and higher as in Fig.9c. The rate of sunshade operation ranged from 14.9 to 38.4 % annually, while the 

ASE values varied from 5.4 to 33.9 % reversely. It is noticeable that the variant with one segment of 

MPF (drc1-86.4% sDA) with dynamic sunshade satisfied the daylight performance criterion initially 

when compared to others, although each variant has identical WWR of 75 %. Thus, we realized how 

the application of only FWR of 1/9 caused the rise in sDA (from 69.6% in drc0 to 86.4% in drc1) to 

pass the requirement. The further step which is a combination of previous two approaches requires the 

modifications of WWR to get the minimum fractions as well as of FWR within the window variants. 

4.2.3 The Third Optimization Approach 

This section describes the approach which is based on the composition of MPF and wall segments in 

the upper window. The film segments in drc6 in Fig.9 were replaced with the wall material step by 

step, similarly to configure MPF-to-wall variants (w0 - w6) as shown in Fig.11. All variants, except 

w6 (29.9% sDA), are above the preferred sDA in non-shaded case (Fig.12a). At this time, the influence 

of sunshade is higher than its impact in the second approach. This is expected due to gradually 

decreasing WWR values in this case (Fig.12b), where w2 with 58.3% WWR is found to be the 

 
 
Figure 11. Schematic views of window variants in the second optimization approach (MPF: micro-

prism film; CG: clear glazing; W: wall. 
 

Figure 12. Monthly breakdown of sDA for each window variant with micro-prism film and opaque 
wall material. 

 
optimum variant getting sDA of 77%. While in the previous approach, drc4 has got similar sDA of 

75%, although it has higher WWR of 75%. Fig.12 gives a detailed insight in introducing the 

contribution of MPF while reducing WWR and FWR in this final approach. 
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When dynamic sunshade is applied to reliably and effectively estimate the performance, w3 (80.8% 

sDA) approaches the desired sDA initially; since, only the 8.3 % rise in film area --modifying w4 into 

w3-- increased sDA from 65.4 % to 80.2 %, with a 23 % improvement. Enlarging the area of MPF in 

w2, w1 and w0 was ineffective in this sense. Their sDA ranged from 91.2 to 96.8. Thus, we come up 

with the best solution getting WWR of 50% and combining FWR of 3/6 within the glazing. The use of 

film succeeded to achieve a stimulating daylit-environment, i.e. in w3 in the final optimization.    

 

Additionally, when we consider MSE and sShade values in autumn there seems to be more sunshine 

than in spring; since, we get sun shade operating hours over and around 50 % for 3 months (August, 

September and October) in autumn, but only for one month (March) in spring. Accordingly, spring and 

autumn are not symmetric in terms of the weather data. 5.4 % ASE and 14.8% sShade are read for w3. 

 

One more comparison is noteworthy to discuss the impact of MPF in the second and third approaches. 

Even though both variants drc3 and w3 are composed of three segments of MPF with 1/2 FWR, their 

location in the window are dissimilar. In static sunshade situation, both of them leads to 63% sDA. On 

the contrary, the former gets a higher sDA of 96% than the latter with an sDA of 80.8% in dynamic 

sunshade condition. Such a variation stems from the fact that the room itself with its highly glazed 

façade (75% WWR) becomes very bright already in the second approach. A summary of findings 

including sDA for all variants is presented in Table 2. 

 
Table 2.  sDA values (with dynamic sunshade). 

 
Figure 13. Illuminance distribution at (a) 9:30, (b)12:30 and (c) 15:30 near the spring equinox. 

 
 

The illuminance data are the basis for the daylight metrics. To gain further understanding and deep 

insight, the distribution of daylight illuminance are obtained at three specific timestamps near equinox 

and winter/summer solstices for the film-wall-clear glazing variants of the final approach. Fig.14-16 
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present the illuminance readings at points located at the midline of the sensor plane, oriented 

perpendicular to the window wall. The sky conditions are clear and sunny to introduce the effect of 

film once again. Such graphical representations inform us about uniformity and useful daylight 

illuminance values (500-2000lx). They represent findings in static sunshade condition.   

 

According to this, the greatest fluctuations are observed at noon in all periods. A greater number of 

points receive intolerably high daylight illuminance when FWR is above 1/2 in w0-w2, at noon and in 

the afternoon near spring equinox (Fig.13). The variant of 25% WWR without any film segment (w6) 

always falls below the illuminance threshold of 500 lx. The addition of only one segment of film (w5), 

on the contrary, moves the distribution above that threshold line noticeably. Though, this is not enough 

to provide adequate daylight when we consider the entire workplane and all seasons in a year.   

 

When w3 is the case, the majority of the points receive useful daylight illuminance throughout the day 

near spring equinox and summer solstice (Fig.14). Distribution only exceeds the illuminance range at 

the sensor points adjacent to windows. Workplane, which is almost 4.0 m away from windows, gets 

higher illuminance near spring equinox; whereas, it is 2.8 m away from windows near summer 

solstice. The deepest area can benefit from the potential of daylight availability during spring and 

summer. The variants with larger sizes of film (w0-w2) result in an overall higher illuminance range,  

  

Figure 14. Illuminance distribution at (a) 9:30, (b)12:30 and (c) 15:30 near summer solstice. 
 

Figure 15. Illuminance distribution at (a) 9:30, (b)12:30 and (c) 15:30 in the winter solstice. 
 

 

and extremely peak values on workplane adjacent to windows (almost 3.4m from windows).This 

situation may lead to glare. That reminds us, once again, why we need to modify MPF area to use them 

in an effective way.    
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Winter solstice leads to the most unbalanced daylight performance in a day. In the morning, 

illuminance distribution of w3 falls within the UDI range on the work plane which is approx. 5.0 m 

away from the window, while unstable daylight frequencies of all window configurations are 

prevailing at noon. The rise of FWR in w0-2 does not change that distance in which daylight is 

effective. The room is quite dark as the illuminance is mainly below the threshold value of 500 lx in 

the afternoon. The afternoon hours in winter solstice remain as worse case conditions. Consequently, 

w3 performs well in summer and in spring regardless of the daytime sequences, when higher sun 

altitudes are valid. When compared to the summer, the springtime leads to a considerable daylight 

fluctuation at noon and in the afternoon. Even, it maintains the useful daylight illuminance on the great 

portion of work plane in the morning in the winter period.  

 

Illuminance maps are generated additionally to distinguish and understand the performance of 

outcomes in detail, if the micro-prism film area is kept the same but its location and fraction have been 

modified in dissimilar window compositions and WWR. Specifically, we concentrated on the 

comparisons of drc2/versus w4 and drc3/versus w3 with static sunshade application. Fig. 16 illustrates 

false color distributions of drc2 and w4. The noteworthy outcome is that there is no much difference 

between drc3 and w3 with respect to the illuminance distributions. However, higher illuminance 

differences exist between drc2 and w4.    

 

Both drc3 and drc2 result in higher illuminances in the static sunshade case at identical distances from 

the window, compared to w3 and w4. On the contrary, w3 and especially w4 reduces the area of high 

sun exposure, by still keeping sufficient illumination in the rear part of the room. More than two third 

of the work plane has got useful daylight illuminance during the most of the daytime. So, w3 and w4 

performs better. In addition, the fact that drc3 and drc2 don't produce much higher illuminances than 
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w3 and w4 is important; as this shows that the film produces the major fraction of illuminance in the 

room. Similar illuminance values can be achieved roughly despite a considerably lower WWR. 

 
Figure 16. Illuminance maps for (a) drc 2  and (b) w4  with static sunshade at 9:30 (upper row), and at 

12:30 (lower row) near the spring equinox.  
 

5. Conclusions  

The focus is to optimize the area of both the window and the micro structured light redirecting film 

integrated in it. Obtaining the possible smallest value of WWR and FWR remains to be the objective 

of this optimization process maintaining the required sDA of 75%. Three optimization approaches for 

a case room with a 75% WWR are developed employing EvalDRC simulations based on Radiance in 

all time stamps over the year. A data-driven model of the films’ bidirectional scattering distribution 

function is contributed in these models. Each optimization approach includes window configurations 

of, first, clear glazing/opaque wall material; second, clear glazing/MPF; and third, MPF/opaque wall 

material together with the generated sunshade options. The choice of MPF is due to its ease of 

application and maintenance. It is integrated in the glass component and looks like a regular window. 

 

Accordingly, the configuration w3 involving only 50% WWR and the application of film with 1/2 

FWR is found to be the most effective one in the entire year. The broad and previous knowledge are 

supported; that is, introducing a micro-prism film in the regular window (i.e. when rw3 and w3 are 

compared) equally shadows off the direct sunlight, but lets it pass in a scattered and redirected way, 

thus raising the illuminance for the regions being further away from the window, even when the sun 

shade is drawn for the remaining clear glazing segment. The micro-prism film successfully and 

considerably enhances the sDA values. Such noteworthy consequences are specified. First, reducing 

the film area in half and replacing that part with opaque wall material also result in acceptable and 

satisfying sDA and msDA in half of the year. However, similar higher sDA values (approx. 90%) are 

just slightly above the sDA of the most effective variant whose FWR is above 1/2. This claims a clue 
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for the unnecessary use of larger film areas. Increasing the film area over its optimum value does not 

make any significant impact on improving the daylight performance in the room. Second, reducing the 

film area in half when WWR is 75% doesn’t result in considerable change in high sDA values. The 

impact of clear glazing area and WWR are more powerful than the impact of film area. Third, the most 

effective variant satisfied the min. requirement of 500 lx deeper regions close to the rear wall (at 8.2 m 

away from windows) at summer solstice and equinoxes. This means that the depth of the perimeter 

region with adequate daylight is almost three times higher than the window height in this case. Fourth, 

the illuminance distribution does not differ considerably when the film area remains the same (i.e. drc3 

and w3 are compared) in non-identical locations. 

 

Findings supported the effective use of redirecting film in various window configurations. Its ultimate 

success relies on design criteria which deal with the window area, film area and the window 

composition. This study provides such knowledge about how to design a convenient window with the 

integration of a DRC in terms of annual daylight autonomy requirements. Architects can get benefit 

from such approaches in their design process.  
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Table 1. Reflectance spectrum at 700 nm, obtained from surfaces on-site.  

 

 
wall ceiling floor desk shelf window frame 

0.88 0.85 0.18 0.51 0.53 0.46 
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Table 2.  sDA values (with dynamic sunshade). 
 

 
 
 

 

rw0 rw1 rw2 rw3 rw4 rw5 rw6 
70.2 63.0 55.8 52.0 42.2 32.5 21.9 
drc0 drc1 drc2 drc3 drc4 drc5 drc6 
69.6 86.4 92.2 94.6 96.2 96.5 97.3 
w0 w1 w2 w3 w4 w5 w6 

96.8 94.9 91.2 80.2 65.4 47.2 21.3 

Table 2

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
Accepted and published in Building and Environment, Vol 102, June 2016, pp 243-256, doi:10.1016/j.buildenv.2016.03.018



 

 

 

 

 

 

 

 

 

 

 

                                                                              

 

                                                          (a)                                                                      (b) 

Fig. 1 (a) Window configuration; (b) Measurement points and sensor plane (the red grid). 
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                                            (a)                                                                              (b) 

Fig. 2 (a) Sketch of a goniophotometer; (b) Transmissive sample with source direction (θi; ϕi), receiver 

direction (θs; ϕs) and sampling aperture A. 
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Fig. 3. Schematic section of a MPF and daylight redirection. 
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(a)                                                                                       (b) 

Fig. 4. (a) Geometry of the model for the optimization; (b) Distribution and 2D coordinates of the 
points. 
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(a) (b) 

      

                                         (c)                                                                     (d) 

Fig. 5. Comparison of measured and simulated results for (a) a sunny, (b) a cloudy (c) and (d) partly 

cloudy days.  
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(a) (b) 

       

                                           (c)                                                                    (d) 

Fig. 6. Correlations between measured and simulated results for (a) a sunny, (b) a cloudy, (c) and (d) 

partly cloudy days.  
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Fig. 7. Schematic views of window variants in the first optimization approach (rw: regular wall; CG: 

clear glazing; W: wall) 
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(a) 

 
(b) 

 
(c) 

 

Fig. 8. Monthly breakdown of sDA for each window variant with clear glazing and opaque wall 

material. 
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Fig. 9. Schematic views of window variants in the second optimization approach (drc: daylight 

redirecting component; MPF: microprism film; CG: clear glazing; W: wall). 
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(a)  

 
(b)  

 
(c)  

Fig. 10. Monthly breakdown of sDA for each window variant of micro-prism film and clear glazing (a) 

without sunshade; (b) with sunshade; (c) with dynamic sunshade.  
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Fig. 11. Schematic views of window variants in the second optimization approach (MPF: micro-prism 
film; CG: clear glazing; W: wall. 
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(a)  

 
(b)  

 
(c)  

Fig. 12. Monthly breakdown of sDA for each window variant with micro-prism film and opaque wall 

material. 

 

Figure 12

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
Accepted and published in Building and Environment, Vol 102, June 2016, pp 243-256, doi:10.1016/j.buildenv.2016.03.018



 

        
(a)                                                                            (b) 

 

(c) 

Fig. 13. Illuminance distribution at (a) 9:30, (b)12:30 and (c) 15:30 near the spring equinox. 
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(a)                                                                       (b)  

 

(c)  

Fig. 14. Illuminance distribution at (a) 9:30, (b)12:30 and (c) 15:30 near summer solstice. 
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(a)                                                                                (b) 

 

(c)  

Fig. 15. Illuminance distribution at (a) 9:30, (b)12:30 and (c) 15:30 in the winter solstice. 
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                                           (a)                                                                       (b) 

Fig. 16. Illuminance maps for (a) drc 2  and (b) w4  with static sunshade at 9:30 (upper row), and at 

12:30 (lower row) near the spring equinox.  
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